
Concern-oriented and Ontology-based

Modular Architectural Design of Software Systems

Crenguţa BOGDAN

Faculty of Mathematics and Computer Science,

 Ovidius University, Constanta, 900527, Romania

ABSTRACT

The design activity is carried out during the

development of every software system

regardless of the software process model that is

used. The design focuses on four detail levels:

data structure, architecture, interfaces, and

components. In general, these artifacts are

constructed by transforming the requirements

model obtained in the analysis activity. In this

paper, we present an approach to construct

software architectures based on the

stakeholders’ concerns of the information

system where the software system will operate.

The concerns are analyzed, their related

knowledge and beliefs are identified, and a

domain ontology is created. Using the ontology

in our approach, the software architecture is

composed by architectural modules. Each

architectural module is constructed using the

Model-View-Controller architectural pattern and

fulfills additional design rules. We applied the

approach in the design and implementation of

the software architecture of a system that

provides the registration of a new trading

company using the services provided by the

public administration institutions.

Keywords: design, software architecture,

concern, ontology, architectural module

1. INTRODUCTION

The design activity is carried out during the

development of every software system

regardless of the software process model that is

used. The design focuses on four detail levels:

data structure, architecture, interface

representation, and components. Depending on

the detail level, the design activity is

decomposed in four sub-activities: data design,

architectural design, interface design and

component-level design [12]. From these sub-

activities, in this paper we focus on the

architectural design of software systems.

The architectural design is the activity during

which software architecture of the system is

constructed. Software architecture is a

description of the components that form the

software system, their relations to each other

that coordinate the actions of these components,

and the principles guiding its design and

evolution [14]. The components can be modules,

objects, web services, and so on, depending on

the partitioning criterion used. Using our

approach, we will obtain object-oriented

software architectures.

The software architectures are useful in the

development process of a software system in

many ways:

- the software architecture is often the first

artifact from design that solves the

decisions about how the requirements of

the system will be fulfilled or how the

stakeholders’ concerns will be addressed;

- the architecture is the key artifact

necessary to obtain a quality software

system. This could be created by reusing

of the existent components from the

development of the similar previous

software systems;

- usually, the architecture is the first

artifact read and used by the

programmer.

Therefore, the obtainment of a quality software

architecture that fulfills the design principles and

addresses the stakeholders’ concerns is an

ongoing problem.

2. BACKGROUND

2.1 Separation of Concerns

The separation of concerns is an old

decomposing and composing principle that

partitions an information or software system into

smaller more manageable and comprehensible

parts [11]. Each decomposing criterion is

derived from a concern or need belonging to a

particular area of interest.

In [2] we defined the (stakeholder’s) concern as

a problem-originated care of one or more

stakeholders involved in the construction or

evolution in its natural environment of an

information system (IS). The care of a

stakeholder derives from his/her interest or

responsibility in the IS’s real world, his/her

thinking to improve or modify something in this

world for a better matching of his/her

expectations, or worrying whether something

wrong or undesired could occur.

The specification of a concern problem uses a

pair of two descriptions: the initial state

description of the current situation, as the

stakeholder perceives it, and the final state

description of the situation that matches

expectations, interests, or preoccupations of the

stakeholder.

These two elements are respectively considered

as hypothesis and conclusion of the problem

specification. The problem’s initial state

contains all information and knowledge

necessary to obtain the final state of the problem

and, thus, to solve it. The high-level

specification of a concern that a stakeholder tries

to solve is an association of such a pair of states

and the role that the stakeholder plays in the

system (see the example C5).

2.2 Concerns Analysis

In order to identify the concerns, we start with

the analysis of the stakeholders’ preoccupations,

interests and beliefs, and identify how they

generate concerns, in other words how the

stakeholders reason. In this respect, we resort to

contemporary philosophy that gives us many

theories of mind.

The most known and accepted theory is the

Functionalism which models the states of mind

(beliefs, concerns, desires, needs, being in pain,

etc.) by considering solely their functional role:

transformers of sensory inputs in behavioral

outputs, in causal relations with other states of

mind [1]. The states of mind are closely related

to the beliefs and knowledge, which are treated

in the next subsection.

Beliefs Related to Concerns

We consider a belief as a state of mind about a

mental representation that symbolizes a mental

object that depends on a perception [16]. In the

cognitive psychology, a mental representation is

defined as a psychological mechanism that

allows the reflection and the knowledge of an

entity, phenomenon, or of a state of affairs in its

absence. The condition is that, this was

previously perceived in the real world [16].

There is a strong relation between knowledge

and beliefs: a credible belief accepted by all

stakeholders who are interested in, it’s a piece of

knowledge.

Nevertheless, we do not consider all the beliefs

and knowledge of a stakeholder, but only those

that belong to the explanations of the cause of

problems, which are related to their concerns.

The mental representations of the stakeholders’

knowledge and beliefs are formed by concepts

that refer to individuals (or instances) belonging

to three categories: physical entities and their

relations in the real world, ad hoc

conceptualizations resulted from the

stakeholder’s experience, and abstract (non-

physical or social) entities that were produced

by the human mind and are shared by various

communities.

The identification of concepts from every belief

and knowledge associated to a concern

represents the activity in which a vocabulary is

created. The vocabulary is a set of concepts that

we use in order to refer to concrete and abstract

entities, as well as relations between them from

the domains associated with the problems

related to the identified concerns. Starting from

each belief and knowledge associated to the

concerns, the participating concepts are gathered

in vocabulary. The vocabulary is used for

solving the problem associated with the concern.

This activity is repeated until the whole

conceptual domain of the problems associated to

the concerns shared between stakeholders is

obtained.

Then the foundational ontology is chosen.

2.3 Ontologies

An ontology is a formal specification of the

concepts intension and the intensional relations

that can exist between concepts. According to

Guarino's definition, "an ontology is a logical

theory accounting for the intended meaning of a

formal vocabulary, i.e. its ontological

commitment to a particular conceptualization of

the world" [6]. A conceptualization is a set of

conceptual (intensional) relations defined on a

domain space [6]. Depending on their arity, the

conceptual relations are unary ones (and they are

called concepts) or binary, ternary and they are

called relations.

2.4 Architectural Design

The architectural design is an activity necessary

for the construction of a software system.

During this activity, the software architecture of

the system is constructed.

In general, the software architectures are

designed applying an architectural pattern. This

describes the kind of components, their

relations, their constraints, the design and the

composition rules of the components.

In our approach, we use the MVC architectural

pattern [3]. This pattern classifies the objects in

three categories: model, views, and controller

objects. The classification criterion is given by

the responsibilities of the objects from each

category. View objects are objects with which

user stakeholders interact directly, such as

frames, forms, panels, and so on. The model

objects eventually contain persistent information

managed by the system. Many such objects

come from the business objects of the domain

model of the information system where the

software system will operate. However, other

objects of this category can also emerge during

the design activity of the software architecture.

In our approach, the model objects come from

the used domain ontology. Finally, the controller

objects have the responsibility to manage the

logical flow and the events produced by the user

stakeholders in their interactions with the view

objects.

The rules that constrain the communications

between objects are the followings:

- the objects from the same level can

communicate among them;

- user stakeholders can access only the

view objects;

- view objects can communicate only with

the control objects. However, there are

cases when the view objects send

messages to the model objects, but these

messages query their states and do not

modify them.

- controller objects can communicate with

the view objects;

- model objects communicate only with

the control objects.

In order to obtain a quality and modular

software architecture the designer must apply

the design principles of low coupling, high

cohesion, and assignment of responsibilities.

These principles are fulfilled if we use the

general responsibilities assignment patterns

(shortly, GRASP) like Information Expert,

Creator, Low Coupling, High Cohesion,

Controller, and Polymorphism [8]. Other design

patterns can also be used [3].

As modeling language, we use the Unified

Modeling Language (UML) which is a standard

modeling language used in the analysis and

design of the information and software systems

[10]. In our approach, we used UML in the

construction of the class diagrams and the

sequence diagrams of the architectural modules.

3. OUR SOFTWARE ARCHITECTURE

DESIGN APPROACH

Having the domain ontology, in this paper we

present a design approach of modular software

architectures. Each architectural module is

constructed using the MVC architectural style

and fulfilling additional design rules. These

rules are given and explained in what that

follows.

The first rule is that we construct an

architectural module for each concern. In this

way, we are sure that every concern is taken into

consideration during the design phase. The

architectural modules can also be constructed in

a certain order. For instance, the order could be

given by the dependency graph of the concerns.

However, the way in which we construct such

graph will not be treated in this paper.

Furthermore, using our approach each concern

has associated a controller object. Every concern

can be addressed and we obtain a better

assignment of responsibilities in classes. The

controller object responsibilities are two-

dimensional: a) managing the events produced

by users and sending of their requests to the

model objects, and b) transmitting the results to

show them in the graphical interfaces.

Information from the belief or knowledge

associated with a concern gives us an idea about

the individuals of the concepts, which will be

used in an architectural module. Thus, for each

concept belonging to a belief or knowledge we

decide if we need to instantiate it and the created

individual is used by the software system. In the

affirmative case, we add to the architectural

module a model class that maps the concept

from the used ontology. Otherwise, we deal with

one of the three cases:

- we already have in the architectural

module a model class that maps the

concept or a related one and we used it if

this is linked by an ontological relation

(or property) to another class;

- within the ontology we seek a related

concept, we create a model class for it

adding, and we add it to the architectural

module; or

- we ignore it because the system does not

use it.

In addition, each object of a model class is a

wrapper of an individual of the mapped concept,

i.e. the object encapsulates an individual of the

concept and can contain extrinsic attributes.

These attributes emerge from the fact that the

object is linked by other ones with which it

collaborates. The type of an extrinsic attribute is

the class of the object that participates in the

collaboration. This rule can be graphically

presented like in Fig. 1. Through the extrinsic

attribute of the o1 object, we can use the

individual contained by the object o2, if the later

gives public access.

Fig. 1. The object model of two objects, which

contain individuals

Another kind of model objects is constituted by

the composite objects. These contain model

objects created at the beginning or during the

system execution. The idea is that if there are

many objects of the same class and they have to

be used during the system execution, we

temporary put them in a composite object that is

linked using aggregation by the object parts. In

addition, a composite object has the

responsibilities to manage the creation and the

state modifying the objects parts. In this way, we

also fulfill the Creator pattern [8].

Furthermore, the controller objects might send

requests to the composite object that solves

them. These objects are useful especially when

they have to be unique during the system

execution. In these cases, we apply the Singleton

pattern [3] to the composite objects. We

graphically present these ideas in the class

diagram from Fig. 2, where we have a unique

composite object of the ConceptNameAggregate

class that contains a collection of objects of the

ConceptName class. We observe in Fig. 2 that

the ConceptNameAggregate class fulfills the

Singleton pattern containing three elements:

- a single and private constructor (the

operation create());

- a private and static variable named

instance of the type

ConceptNameAggregate, i.e. the class

where it belongs, and

- a public and static operation called

getInstance() that returns (using the

variable instance) a reference to the

unique object of the class.

o1: ConceptNameA

ea: ConceptNameB

individualConceptNameA

o2: ConceptNameB

individualConceptNameB

Fig. 2. A class diagram in which three design

patterns are applied: Singleton, Creator, and

Low Coupling

We also show the sequence diagram (Fig. 3) of

the collaborating objects when a controller

object creates an object of the ConceptName

class. In this figure, we observe that we applied

the Creator and the Low Coupling design

patterns [9] by assigning the object of the

ConceptNameAggregate class to the

responsibility to create objects from the

ConceptName class (Creator pattern) and the

controller object sends all necessary information

to the composite object (Low Coupling pattern).

Composite objects could also come from the

ontology, not only from a design decision. In

other words, if an A concept from a belief or

knowledge is linked to another B concept by the

temporal and temporary parthood or the

constitution relation, then we add the B concept

to the architectural module as a model class.

After that, we link the B class to the class that

maps the A concept by the UML aggregation

relation. Finally, we verify if the aggregate class

has to manage exclusively its parts. In the

affirmative case, the aggregation relation

becomes a composition one.

Fig. 3. The sequence diagram of the scenario in

which a composite object creates an object part

with the information received from a control

object

The last category of the model objects is

constituted by the manager objects. These

objects have the responsibility to manage the

operations with the ontology. The manager

objects deal with two kinds of operations:

loading and saving the individuals from/in

ontology.

The manager objects execute the saving

operations so that the ontology consistency is

maintained. This responsibility raises problems

due to the restrictions imposed by ontology.

These problems can be solved in the design or

implementation phase of the software system.

As we decided to use the Jena framework [7] to

work with the ontology, we chose to solve the

restriction problems in the implementation

phase. The idea is that before an individual of a

concept is saved in the ontology, we verify if it

is linked by properties with restrictions by other

individuals. In the affirmative case, the manager

object sends the properties and range classes to

the controller object (that manages the concern),

and these classes have to be instantiated. The

controller object creates a view object that could

be a form or a graphical interface and show it to

the user that will fill it with the necessary

information.

The view level of an architectural module is

constructed according to the design rule: any

knowledge or belief that needs information from

the user has an associated view object. This

could be applied in one of two cases: a concept

from a knowledge or belief does not have

individuals in the ontology or the associated

class from the architectural module does not

have objects necessary for the system

functioning, or we are not in the previous case,

but we need confirmations from the user.

4. CASE STUDY

Our approach is applied to the information

system of the Romanian Public Administration

(short, RPA). The RPA includes public

institutions like the TRO, the Public Finance

Administration, the Labor Safety and Social

provider: client:

ControlClass ConceptNameAggregate

 cn:ConceptName

getInstance()

addConceptName()

create()

ControlClass

 ConceptNameAggregate

- instance:ConceptNameAggregate

- create()

 +addConceptName(info)

 +getConceptName(id):ConceptName

 +getInstance():ConceptNameAggregate

ConceptName

+create(info)

+provider

request
+client

Insurances Agency, the Official Gazette

Agency, etc..

The RPA also provides services to companies

belonging to the business environment or to

private entrepreneurs who want to establish their

own company. In order to do this, the founder

has to register his or her company at the TRO in

the city where the company is based. This public

institution issues a registration certificate that

authorizes the legal operation of his or her

company.

4.1 Identification of Concerns and their

Related Knowledge and Beliefs

For the first step of the approach, we identified

the stakeholders who have a legitimate interest

in the information systems considered. They are

applicants such as founders, administrators,

legal representatives, including companies or

corporate entities, and clerks, jurists, judges,

operators of service providers such as public

institutions and banks.

For the second step, we identified the concerns

of the stakeholders, more precisely 31 concerns

of the founder and the other stakeholders.

Below, we give the description of a founder's

concern.
C5 Name: Care to state the new trading company’s

name

Problem

Hypothesis: The founder has to choose

at least three Romanian names. These

names will be verified by the TRO.

According to art. 39 Law no. 26/1990

regarding the Trade Register, the names

cannot contain certain words.

Conclusion: What name will the new

trading company have?

 Stakeholders: Founder

The next two steps consist in the analysis of the

concerns and business rules. The aim of the

analysis is the identification of the pieces of

knowledge and beliefs. For instance, in the table

below we provide two samples of knowledge

and belief of the concern C5.

Table 2. Mental representation descriptions of

the beliefs and knowledge of C5
Code Mental representation description in natural

language

B10 Every trading company name may contain the

words: ''national'', ''Romanian'', ''institution'' or

their derivates subject to the consent of the

Government General Secretariat.

K5 All the trading company names are reserved by

the TRO.

As statistical information from the concerns

analysis we derived 204 beliefs and pieces of

knowledge and from the business rules we

obtained 60 beliefs and pieces of knowledge.

4.2 Our Ontology

Furthermore, from each belief and piece of

knowledge we identified the concepts and their

conceptual relations. Then, we analyzed them

and, using the DOLCE [9] and D&S [4]

ontologies, we described the intension of the

concepts and their conceptual relations.

In DOLCE, the restrictions are given using a

subset of the first-order logic and their

verification is a long time task. That is why we

translated our domain ontology in OWL DL

(Web Ontology Language-Description Logic)

language [15] and we checked the ontology

consistency with the help of the Protégé tool [5]

and the RacerPro reasoner system [13]. In Fig. 4

we show an excerpt of our ontology in the OWL

language.

4.3 The Application of our Design Approach

Based on the design approach described in

Section 3 we constructed the software

architecture of a software system that provides

the registration of a new trading company using

the services provided by the public

administration institutions.

The software architecture is formed by 31

architectural modules, one module for each

concern. The architectural module associated to

the concern C5 is presented in Fig. 5. Based on

limited space reasons, we present only the

architectural module of the concern C5 classes

and their relations, but the classes do not contain

attributes and operations.

Each architectural module is constructed using

the domain ontology and fulfilling the design

rules of our approach.

We started to implement the software system

using the Java language. In order to use the

domain ontology, we use the Jena framework [7]

also coded in Java. Due to the Jena framework,

Fig. 4. Excerpt of our ontology in the OWL

language

we added to our software architecture two

classes: Ontology and MyDBConnection. The

first class is used in order to create a Jena

persistent model that maps the used ontology.

The second class gets the connection with the

used MySQL database.

5. CONCLUSIONS

In this paper, we presented a concern-oriented

and ontology-based approach to design quality

modular software systems divided in

architectural module.

Each architectural module is associated to a

concern and uses classes that map concepts from

the used domain ontology. From the technical

point of view, an architectural module is

constructed using the MVC architectural pattern,

design patterns, and additional design rules.

The advantages of our approach are: a) as a

concern-oriented approach, it allows the system

designer to solve the concerns (i.e. to solve the

problems associated to concerns) step by step,

with the help of the system stakeholders. In this

way, the solving of a concern’s associated

problem can be decoupled by the solving of

other problems; b) the architectural module

associated to a concern could be used in other

software architectures for other sub-processes of

the public administration domain, if we have the

same concern.

However, the approach has a limitation in the

sense that it is not a universal one, more

precisely it can be applied for the developing of

the 3-tier software architectures that provide to

users one or more graphical user interfaces.

6. ACKNOWLEDGEMENTS

Special thanks to Coralia Martinescu and Eugen

Dumitru for their support in the ontology

construction and software system development.

7.REFERENCES

[1] N. Block, Readings in Philosophy of

Psychology. Cambridge, Harvard, 1980.

[2] C. Bogdan, L.D. Serbanati, “Toward a

Concern-Oriented Analysis Method for

Enterprise Information Systems”, IEEE

International Multi-Conference on

Computing in the Global Information

Fig. 5. The architectural module of the concern

C5

Technology (ICCGI 2006), Bucharest,

Romania, 2006.

[3] E. Gamma, R. Helm, R. Johnson, J.

Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison

Wesley Professional, 1994.

 [4] A. Gangemi, P. Mika, “Understanding the

Semantic Web through Descriptions and

Situations”, Proceedings of the International

Conference ODBASE03, Italy, Springer, 2003.

[5] J. Gennari, M. Musen, R. Fergerson, W.

Grosso, M. Crubzy, H. Eriksson, N. Noy, S. Tu,

“The evolution of Protégé-2000: An

environment for knowledge-based systems

development”, International Journal of

Human-Computer Studies, 58(1), 2003.

[6] N. Guarino, “Formal Ontology and

Information System”, Proceedings of FOIS'98,

Trento, Italy, IOS Press, 1998.

[7] Jena Framework, link:

http://jena.sourceforge.net/, 2007.

[8] C. Larman, Applying UML and Patterns.

An Introduction to Object-Oriented Analysis

and Design and the Unified Process, Prentice

Hall, 2004.

[9] C. Masolo, S. Borgo, A. Gangemi, N.

Guarino, A. Oltramari, “WonderWeb

Deliverable D18. Ontology Library”, IST

Project 2001-33052 WonderWeb: Ontology

Infrastructure for the Semantic Web (2003)

[10] OMG, Unified Modeling Language

Superstructure, version 2.0, ptc/03-0802, 2003.

[11] D. L. Parnas, “On the Criteria to Be Used

in Decomposing Systems into Modules”,

Communications of the ACM, 15(12), 1972.

[12] R. S. Pressman, Software Engineering. A

Practitioner's Approach, McGraw-Hill

Publishing Company, 2000.

[13] RacerPro Reasoner, http://www.racer-

systems.com/, 2008.

[14] The Institute of Electrical and Electronics

Engineers (IEEE) Standards Board,

Recommended Practice for Architectural

Description of Software-Intensive Systems
(IEEE-Std-1471-2000), 2000.

[15] World Wide Web Consortium, OWL Web

Ontology Language Reference, W3C

Recommendation 10 February 2004,

http://www.w3.org/TR/2004/REC-owl-ref-

20040210/, 2004.

[16] M. Zlate, Cognitive Mechanisms

Psychology, Polirom, 2004.

