
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

155

IMPLEMENTATION SOLUTIONS FOR DEEP LEARNING NEURAL

NETWORKS TARGETING VARIOUS APPLICATION FIELDS

Dana-Mihaela Petroşanu 1*

Alexandru Pîrjan 2

ABSTRACT

In this paper, we tackle important topics related to deep learning neural networks and

their undisputed usefulness in solving a great variety of applications ranging from image

and voice recognition to business related fields where they have the potential to bring

significant financial benefits. The implementations and scale sizes of deep learning neural

networks are influenced by the requirements of the developed artificial intelligence (AI)

applications. We are focusing our research on certain application fields that are most

suitable to benefit from the deep learning optimized implementations. We have analyzed

and compared the most popular deep learning libraries available today. Of particular

interest was to identify and analyze specific features that must be taken into account for in

accordance with the tasks that have to be solved.

KEYWORDS: Deep Learning, Artificial Intelligence, Deep Learning Libraries.

1. INTRODUCTION

The concept of deep learning has existed for a long period of time, being called in

different ways, according to different perspectives and moments in time. In the last years,

the amount of data has increased significantly, more and more data being possible to be

used in the training process of artificial neural networks (ANNs), thus increasing the

usefulness and applicability of the deep learning concept. The evolution of the parallel

hardware architectures has made it possible to develop complex deep learning structures

having huge numbers of processing elements (neurons). Therefore, deep learning models

have evolved along with the computational resources, becoming able to tackle

successfully complex problems with a high level of accuracy.

According to the scientific literature [1], the concept of "deep learning" originated in the

1940s and one can identify three stages in its evolution. In the first stage, during the years

1940s and 1960s, the concept was called "cybernetics" and is marked by the development

of the perceptron concept, that made it possible to train solely a neuron. Afterwards, in the

period 1980-1995, the concept was called "connectionism", being strongly influenced by

the development of the back-propagation technique that enabled the possibility to train

1* corresponding author, PhD Lecturer Department of Mathematics-Informatics, University Politehnica of

Bucharest, 313, Splaiul Independentei, district 6, code 060042, Bucharest, Romania, danap@mathem.pub.ro
2 PhD Hab. Associate Professor Faculty of Computer Science for Business Management, Romanian-American

University, 1B, Expozitiei Blvd., district 1, code 012101, Bucharest, Romania, alex@pirjan.com

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

156

ANNs having at most two hidden layers. The concept of "deep learning" was coined in

2006, during the third stage [1].

According to [2], the concept of deep learning can be viewed as a family of machine

learning techniques, that exhibit certain common characteristics. Thus, they consist in

several layers of neurons, interlinked in order to identify, extract and process certain

characteristics. The output produced by each intermediary layer is used as an input for the

following one. These techniques can employ either supervised or unsupervised methods.

Common features are identified and are being processed in order to obtain specialized

characteristics, arranged according to their rank. The techniques can achieve more levels

associated with different concepts, related to the abstraction degree.

Interlinking is the main characteristic on which the deep learning concept relies upon. The

whole principle of deep learning lies in the fact that even if a single element (also called a

neuron) does not exhibit intelligent features, several elements interlinked together might

have the capacity to unveil such qualities. Therefore, a key factor in the context of

achieving an intelligent behavior consists in the number of processing elements that

should be extensive [1].

Over the years, it has been proven that the networks' sizes significantly influence the

accuracy of the obtained results and make it possible to approach complex tasks. If we are

to compare the sizes of today's neural networks with the ones from forty years ago, we

would notice that the dimensions of these networks have increased dramatically. In order

to be able to implement huge sized networks, one must have access to significant

computational hardware and software resources.

In the following section, we analyze the most important issues regarding the

implementation of deep learning neural networks.

2. IMPLEMENTATION ASPECTS OF DEEP LEARNING NEURAL NETWORKS

When training deep learning neural networks one can identify several approaches. A

classical approach consists in training the networks, using the Central Processing Unit

(CPU) of only one computer. Nowadays, this way of dealing with the problem does not

provide sufficient computational resources. The modern approach consists in using

multiple processing nodes distributed over an entire network and modern parallel

processing architectures such as those of the graphics processing units (GPUs).

The neural networks have high requirements from the computational point of view and

thus one has to overcome the serious limitations of classical CPUs. There are several

optimization techniques that one can apply in order to improve the performance of central

processing units and benefit at maximum from the architectural features such as: the

multi-threading mechanism; aligning and padding the data as to allow the central

processing unit to retrieve the data optimally; enclosing supplementary data bytes in-

between the existing data structures; devising appropriate floating or fixed type execution

plans; reducing at minimum the expending of memory by sorting in a descending order

according to the width of the elements; devising customized numerical computational

procedures [1].

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

157

A lot of people who carry out scientific activities related to machine learning tend to

overlook the above-mentioned implementation aspects thus risking to become limited in

terms of the maximum number of neurons and of the obtained accuracy. Nowadays GPUs

have become the platform of choice when developing state-of-the-art implementations of

artificial neural networks. Initially, graphics processing units targeted exclusively the high

computational requirements of video gaming applications [3]. The massive processing

power of the GPUs offers great advantages in optimizing applications from various fields

[4] and thus in the development of neural networks.

The type of processing that the GPU performs is relatively straight forward when

compared to the central processing unit's tasks that necessitate frequent shifts of the

execution to different sequences of instructions. One can parallelize without difficulty

most of the processing tasks as the vast majority of the required computations are not

depending on each other. When designing the graphics processing units, the

manufacturers had to take into account the necessity of obtaining a large amount of

parallelism and a high transmission capacity of the data fetched from memory, being

compelled to reduce the GPU clock frequency and its ability to shift frequently the

execution to different sequences of instructions. In order to develop an artificial neural

network, the scientists must use various buffer settings in order to store the network's

parameters, the threshold value at which the activation occurs, taking into account the fact

that all these values must be computed for each new step of the training process [1].

The graphics processing units represent a better solution in implementing deep learning

neural networks, as they offer a higher transmission capacity of the data fetched from

memory, when compared to the one of the central processing units. Furthermore, as in the

development process of an artificial neural network (ANN) there are not required frequent

shifts of the execution to different sequences of instructions, the graphics processing units

can successfully manage the whole execution process, being best suited for this kind of

tasks. The software operations related to the ANNs have the potential to be decomposed

in multiple tasks, that can be managed in parallel, by neurons belonging to the same layer.

Therefore, these operations could be carried out easily as one employs the parallel

processing power of the graphics processing units.

Initially, when the graphics processing units were developed for the first time, their

architecture was restricted exclusively to graphics processing purposes. As the time

passed, the graphics processing units have evolved, offering a greater flexibility towards

specialized functions that could be called for different allocation and transforming

operations. What was interesting is that, for the first time, these operations needn't have to

be solely for graphics processing. Consequently, the graphics processing units have

become a viable tool for performing scientific computations by using its resources that

were initially developed only for graphics rendering.

After the Nvidia company has introduced the Compute Unified Device Architecture

(CUDA), the graphics processing units have evolved and become general-purpose

graphics processing units that were able to execute source-code and not only specialized

functions. In light of the new possibilities that emerged due to the huge parallel

processing power and increased memory bandwidth, the graphics processing units that

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

158

incorporated the CUDA architecture became the platform of choice for scientists that

were prospecting the field of deep learning [1].

In order to harness the full computational potential of a graphics processing unit, the

developers must apply optimization techniques other than those used for central

processing units. In contrast with central processing units, that use the cache mechanism

to improve the overall performance of a source code, the graphics processing units might

perform several operations more times in parallel and obtain an improved performance

when compared to the CPU.

For a programmer to achieve top peak performance on a graphics processing unit, he must

make full use of the Compute Unified Device Architecture threading mechanism and

carefully manage the threads within blocks of threads and the blocks in grids of blocks of

threads. Particular attention must be payed to managing correctly and efficiently the

memory. One must take into account techniques such as memory coalescing but most of

all the features offered by the respective CUDA architecture in order to improve the

software performance of a neural network. An important implementation aspect when

developing a neural network using a CUDA GPU consists in assuring that every thread of

a group of threads processes the same task, in the same time, in parallel.

The graphics processing unit is not suited for frequent shifts of the execution to different

sequences of instructions and this is the reason why one must not completely neglect the

central processing unit, the best performance being obtained when using a hybrid

approach for developing artificial neural networks.

In CUDA, the execution threads within a block of threads are grouped in warps,

containing 32 threads. This dimension represents the smallest amount of data that is

processed by a Compute Unified Device Architecture multiprocessor, according to the

"Single Instruction, Multiple Data" category of the Flynn's taxonomy [5]. Therefore,

during an execution cycle, the threads within the same warp process a single instruction.

If different instructions should be processed by the threads within the same warp, they are

executed sequentially.

Sometimes, in their research, the developers need to check the quality, performance or

reliability of new algorithms or models and in this purpose, they often use software

libraries, developed in various programming languages, containing high performance

software packages, useful for developing their applications. For example, in the Machine

Learning field, the libraries are developed in Python, Java, .NET, C, C++, Lua and other

programming languages [1], [6], [7]. Some of the most popular deep learning libraries are

categorized by their programming language and synthetized in Table 1.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

159

Table 1. Some of the most popular deep learning libraries

No.

The

programming

language

Deep learning libraries/toolboxes developed in the

respective programming language

1 Python

Theano and based on it: Keras, Pylear2, Lasagne, Blocks

Caffe

nolearn

Gensim

Chainer

deepnet

Hebel

CXXNET

DeepPy

DeepLearning

Neon

2
Python API over a

C/C++ engine
TensorFlow by Google

3
Matlab

ConvNet

DeepLearnToolBox

cuda-convnet

MatConvNet

4
C++

eblearn

SINGA

NVIDIA DIGITS

Intel® Deep Learning Framework

Microsoft Cognitive Toolkit, previously known as CNTK

5
Java

N-Dimensional Arrays for Java (ND4J)

Deeplearning4j

Encog

H20 Web API

6 JavaScript Convnet.js

7 Lua Torch

8 Julia Mocha

9 Lisp Lush (Lisp Universal Shell)

10 Kaskell DNNGraph

11 .NET Accord.NET

12 R
darch

deepnet

The Python programming language was developed by Guido van Rossum and launched in

1991 as a GPP (general-purpose programming) high-level language. There are numerous

frameworks and libraries developed in Python. For example, the Theano library can be

used for processing mathematical operations. This library facilitates the development of

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

160

deep learning algorithms. Theano is the foundation for several other libraries that are

based on it: Keras, Pylear2, Lasagne, Blocks [8].

Keras represents a deep learning neural network library, comprising several modules, that

can be successfully used for processing tensors using either the graphics processing unit

or the central processing one. The Pylear2 library comprises a large set of algorithms that

can be successfully used in the development of deep learning neural networks. The

Lasagne library has been developed in modules, being characterized by easiness,

clearness, having in mind the success of its practical applications. Another developing

framework useful in developing deep learning libraries, based on the Theano library, is

Blocks [9].

One of the most popular framework for developing deep learning neural networks is

Caffe, developed in Python by BVLC (Berkeley Vision and Learning Center) and other

developers of the software community. The primary characteristics based on which this

framework has been designed, consist in an efficient processing, modularization in order

to obtain a state-of-art framework. Using the Caffe framework, Google has developed its

DeepDream project, a library written in the C++ programming language, licensed under

the Berkeley Software Distribution (BSD), having a Python interface [6].

Another deep learning library developed in Python is nolearn, that comprises a set of

machine learning tools and makes use of wrapping and abstraction, targeting already

developed libraries [10]. Gensim is a specially developed toolkit in Python, that exposes

several high-performance algorithms, designed for developing deep learning neural

networks that have to process huge amounts of text data [8].

Chainer, programmed in Python, facilitates the implementation of deep learning neural

networks, offering support for certain algorithms. One prominent characteristic of Chainer

is its flexibility, being easy to use and understand [9]. Another deep learning

implementation achieved using the Python language is deepnet, an implementation that is

based on Graphics Processing Units. Many of the most well-known deep learning

algorithms have been implemented within deepnet on the GPUs in order to facilitate the

development of deep learning neural networks [6].

The Hebel library was developed to facilitate the development of deep learning neural

networks in the Python programming language, using PyCUDA that makes it possible to

benefit from the huge parallel computational power of Graphics Processing Units that

incorporate the Compute Unified Device Architecture (CUDA). It offers support for the

most well-known and efficient kinds of neural networks [10].

CXXNET is a reliable deep learning framework where the processing is spread among

multiple processing nodes. It offers support for the CUDA-C language and incorporates

user-friendly interfaces useful for developing the networks [8]. DeepPy is a framework

for deep learning, under the free software license of the Massachusetts Institute of

Technology (MIT), being based on the Python programming language. The existing

source code can be extended with ease and also offers support for Nvidia Graphics

Processing Units that incorporate CUDA technology [9].

DeepLearnig is a library, that was programmed in C++ and Python and contains high

performance software packages, useful for developing deep learning neural networks [6].

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

161

Based on the Intel Nervana Python comes Neon, a framework for creating deep learning

neural networks, having as a main declared goal to attain the best in-class results [10].

The TensorFlow software library is written with a Python API over a C++ engine and was

developed by the Google researchers. This library is useful in carrying out the research

related to deep learning neural networks and many other scientific fields. TensorFlow is

designed to solve problems related to numerical computations through graphs. Within

such a data flow graph, the nodes are the mathematical operations and the edges are the

tensors. The library can be easily implemented on several central processing units or

graphics processing units in different environments through the same Application

Programming Interface (API) [10].

The popular development environment Matlab offers many useful software instruments

for developing and implementing a large variety of neural networks: ConvNet,

DeepLearnToolBox, cuda-convnet, MatConvNet. Convolutional neural networks

(ConvNet) represent powerful deep learning tools for classifying different elements, by

acquiring knowledge on their own from unprocessed data.

Another software instrument for developing deep learning networks is the

DeepLearnToolBox that is not active anymore, being considered obsolete. Still, it

contains different types of deep learning neural networks like deep belief networks and

convolutional networks along with different autoencoder types [10]. Cuda-convnet is

another useful implementation of the feed-forward artificial neural networks developed in

Matlab. It is implemented in C++/CUDA, being a high-performance toolbox. Its training

is based on the backpropagation algorithm.

Another Matlab toolbox is MatConvNet that implements Convolutional Neural Networks

(CNNs) and is useful in applications that require the automated extraction of information

from images. The main properties of this toolbox are its simplicity, efficiency and

capacity of running the most important Convolutional Neural Networks, among which it

is worth mentioning applications for image or text detection, sorting, segmenting,

recognition [6].

There are a lot of deep learning frameworks available that use the C++ programming

language as their basis, for example: eblearn, SINGA, NVIDIA DIGITS, Intel Deep

Learning Framework and Microsoft Cognitive Toolkit, previously known as CNTK.

Eblearn represents a useful C++ library, under an open-source license, developed at the

New York University. It is useful in developing different types of CNNs, providing a

friendly Graphical User Interface [10].

Another deep learning framework is SINGA, developed in 2014 in Singapore, at the

National University. SINGA is supported by an American non-profit corporation, ASF

(Apache Software Foundation). This library is based on decomposing data between the

nodes of a cluster and employs a parallel training process. It is useful in managing the

interactions between computers and human languages (natural language processing) and

supports many deep learning classes of models [6].

Developed by Nvidia, DIGITS (Deep Learning GPU Training System) represents a

powerful tool, useful in training in a reduced time DNNs (deep neural networks) that are

capable to classify images and detect objects. It has as a main advantage the fact that is

https://code.google.com/p/cuda-convnet/
http://www.vlfeat.org/matconvnet/

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

162

interactive and therefore the researchers can be preoccupied mainly by developing the

neural networks, without having to be concerned about issues regarding writing computer

programs, identifying and removing errors.

Intel Deep Learning Framework (IDLF) represents a SDK (software development kit)

library, providing a software framework that fuses together the Intel platforms and is

useful in training, executing and accelerating DNNs. The main characteristics of IDLF

are: it offers support for a rich variety of accelerators; its development is based on an

optimized code; it supports the development of a wide range of ANNs on the same

platform; it is suitable for cloud computing by devising schemes for allocating the tasks

among different processing nodes; it enables the improvement of the training process

during its execution [6].

Microsoft Cognitive Toolkit, previously known as CNTK is a deep learning library

developed in C++ that offers high accuracy and speed, being compatible with many

common programming languages or algorithms. This toolkit is characterized by a series

of capabilities and features that it offers to the users. It contains components that are able

to manage sparse or dense data from other programming languages, being suitable for

both unsupervised and supervised learning. It also contains components that are able to

handle massive datasets. Microsoft Cognitive Toolkit is characterized by an efficient use

of resources, offering a high level of parallelism on multiple processing units and an

optimized mechanism of memory sharing, useful in managing large models in the

memory of graphics processing units. The toolkit offers a full application programming

interface useful in developing neural networks, evaluating models, ensuring suppleness

and flexibility [10].

A series of deep-learning libraries are developed in the Java general-purpose

programming language, for example: N-Dimensional Arrays for Java (ND4J),

Deeplearning4j, Encog and H20 Web API. The first of these libraries, ND4J, is designed

for the Java virtual machines (JVMs), an abstract machine for automatically performing

computations, that makes it possible for a computer to run Java software instructions.

ND4J is characterized by the fact that it runs fast specific routines, requiring a small

amount of random access memory [11].

The Deeplearning4j deep-learning library is written for Java and Scala programming

languages, under an open-source license, developed mainly in order to be used in

managing the external and internal factors that affect the functions of companies, its

usefulness in research having lesser extent. Encog is another software instrument that has

been evolving since 2008, being useful in developing deep learning networks, supporting

a wide range of learning algorithms and neural networks. It is useful in many scientific

fields, especially in medicine and finance [11].

H2O is another deep-learning library developed in Java, under an open-source license. It

is able to scale to more processing nodes, offering a high-level of performance and access

to complex algorithms that enable programmers to develop powerful applications, using

an intuitive application programming interface. A lot of companies have developed

complex expert systems that help improve their economic activity. H2O is able to store

and process billions of tuples in-memory using a specialized compression algorithm. H2O

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

163

offers access to familiar application programming interfaces and also an incorporated web

interface [6].

Convnet.js represents a deep learning library developed in Javascript, having as a unique

characteristic the ability to develop deep learning neural networks using solely an internet

browser. Convnet.js has the same software and hardware requirements as the browser,

being able to train and implement ANNs without a hassle. It can also be deployed using

the supplied Javascript source code file "node.js" in a server [10].

Another programming language useful in developing deep learning neural networks

libraries is Lua, developed in 1993. Although being used extensively in the videogames

industry, Lua has been used successfully in developing a wide range of popular

commercial applications, proving to offer a high-level of performance, efficiency, ease of

programming, a little consumption of resources.

Based on Lua, in 2002 was released Torch, a consistent framework that provides access to

algorithms optimized for the Compute Unified Device Architecture enabled GPUs, useful

in the machine learning field. The main aim of the framework Torch is to offer the

greatest extent of adaptability, reduced time in developing specialized algorithms with

minimum effort. There are a lot of popular social networks, search engines, universities

and research institutes that use Torch in their everyday activities [12].

A programming language designed for numerical computations is Julia, released in 2012.

Julia includes a complex compiler along with a comprehensive specialized mathematical

library, offering support for executing the tasks in parallel on multiple processing nodes.

This programming language was used in developing Mocha, a specialized framework for

deep learning neural networks, being influenced as a development model by the above

analyzed Caffe framework. Mocha implements specialized numerical solvers and tools

useful in training CNNs. The most important characteristics of Mocha are represented by

its modularity, complex interface, easiness in portability, being compatible with multiple

JavaScript assertion libraries [13].

Lisp represents an ensemble of programming languages, that dates back to 1958. It was

released one year after the Fortran programming language and it is still widely used today.

Initially Lisp was developed as a way of facilitating the mathematical notations in the

software programs and soon afterwards it began to be the language of choice for the

scientists in the artificial intelligence field. Lisp introduced for the first time many

programming paradigms. Based on Lisp, it was developed under the General Public

License the Lush object-oriented programming language targeting the scientific field. It

has a wide range of applications (machine learning, image and signal processing,

extracting knowledge from data, etc.) and can overcome the limitations of other

consecrated development environments [6].

The Programming language Haskell was released in 1990, targeting diverse applications'

domains without accepting to change the state of an object or to modify it after it has been

created. There are various implementations for Haskell released under the open source

license, some of them being compliant with the Haskell 98 standard ("Glasgow Haskell

Compiler", "Utrecht Haskell Compiler", "Jhc", "LHC" etc.) and other implementations are

not kept active or in maintenance anymore.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

164

In Haskell, it was developed DNNGraph, a DNN domain specific language for

developing the network's structure. DNNGraph makes use of the different libraries like

the "lens library" and a graph oriented library "fgl" for defining the structure of the

network and also a series of optimization strategies. DNNGraph is able to generate files

compatible with the above analyzed Caffe and Torch frameworks [10].

In the extremely popular .NET framework it was developed Accord.NET that offers

artificial intelligence capabilities along with specific software libraries in the fields of

sound and graphics processing. Accord.NET offers the necessary tools to build

commercial applications. It offers to the developer a lot of ready-made templates and the

possibility to exchange and interchange the machine learning algorithms with ease [6].

A very popular programming language, released in 1993 under an open source General

Public License is R, a development environment that facilitates computation in the field

of statistics and image processing. R offers a CLI (command line interface) and there are

also available a few graphical user interfaces [10].

There are several frameworks and tools developed in the R programming language

designed for building DNNs, for example darch package and deepnet. The darch package

offers the possibility to train the neural networks in advance using the "contrastive

divergence method" and popular specialized algorithms that make detailed adjustments to

the networks' parameters. Another framework, developed based on the R programming

language is deepnet, that offers several DNNs architectures, specialized algorithms and

encoders [6].

In the next section, we present a series of strategies, useful in improving the software

performance of the deep learning neural networks implementations.

3. STRATEGIES FOR IMPROVING THE PERFORMANCE OF DEEP

LEARNING NEURAL NETWORKS IMPLEMENTATIONS

Deep learning neural networks can be successfully implemented in image, video, sound,

text recognition or processing and in obtaining accurate predictions in various scientific

fields, such as economy, mathematics, physics, neuroscience, medicine, pharmaceutical

industry. Most of the electronic means of payments and micropayments need solutions

that can identify, prevent and counteract frauds [14], [15]. Deep learning neural networks

offer new possibilities to secure the electronic means of payments, being able to identify

fraud faster and more accurately than the human factor. Used along with other algorithms,

deep learning represents a powerful tool for classifying, clustering and forecasting, based

on the input data (Figure 1).

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

165

Figure 1. A deep learning neural network that recognizes the traffic signs1

In Figure 1 it is represented a deep learning neural network that recognizes the traffic

signs. The neural network is trained using as an input a set of traffic signs. After the

network has been trained, it is put to the test using as an input a blurred traffic sign, as if it

were affected by poor meteorological traffic conditions when driving.

When developing large neural networks that have to process a lot of data in order to

obtain the results, a huge computing power is required. A single workstation is not

sufficient for this kind of computational volume. As a consequence, a distributed system

comprising multiple processing nodes (workstations) is an appropriate solution for

training and achieving the results in due time. The processing in parallel of data is easily

achieved in the case of deep learning neural networks as every input set that has to be

inferenced can be executed by a different node. Another method for attainting data

parallelism is to divide the data in several parts and allocate each part to more processing

nodes [1].

1 The figure has been created using the software tool Visio 2016, by inserting "Online Pictures" type elements,

tagged with reusable "Creative Commons Licenses".

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

166

One must note that it is much more difficult to process the data in parallel throughout the

training phase. For example, in the case of the scaled gradient descent one would obtain

better results if he allocates the steps that have to be computed to several processing nodes

of the distributed system. However, this approach cannot be achieved as the values

obtained at a certain step depend on the values obtained at a previous one.

In the scientific literature [1], [16], [17], it is proposed an asynchronous approach that

consists in allocating portions of the memory where the values reside among multiple

processing cores. Every variable is unlocked during the processing in order to assure a

concurrent access of the processing cores to the values. Nevertheless, this solution has the

drawback of diminishing the enhancement that should be obtained when progressing to a

new step of the algorithm as several processing cores can sometimes store new data over

the existing contents of a variable and thus cancel the progress up to that moment.

Although, an undisputed advantage of the asynchronous approach consists in the speedup

of the whole learning phase.

Other variations of this method are proposed in the literature that consist in handling the

values using a dedicated server [18]. The asynchronous approach implemented on a

distributed system yields notable results being at the forefront of the training process for

deep learning neural networks.

The most important aspect in off-the-shelf software is to reduce as much as possible the

execution time and the memory load when computing the results rather than when

training the neural network. It is not uncommon for a certain neural network to be trained

using high computational resources and afterwards to be implemented and put into use in

an environment where the hardware resources are more consumer-oriented.

In order to evaluate a specific developed model, it is often used a model compression

strategy, within which an initial model is replaced with another one, having a smaller size,

which requires a reduced amount of memory and offers the benefit of a reduced execution

time. This technique is suitable for the cases when the initial model has a big size. In this

case, several smaller models are designed and tested, finally replacing the initial one with

the set of models, thus obtaining the model with the smallest error of generalization.

Analyzing and assessing all the developed models could become an intense resource

consuming task [19].

In some situations, using only one model can yield better results if its size is large enough.

In the cases when the number of the existing training elements is reduced, one must use a

larger number of parameters than are required by the specific problem. After training the

neural network, one can simply obtain a new larger training set of elements by using it.

Afterwards, using these elements, one can train other models, having reduced sizes, that

offer very good results using as training sets, different subsets of the new larger training

set. The training data must be eloquently sampled so that the neural network can provide

correct results when it is being applied in a real word scenario [1].

Among the strategies for improving the performance of data processing systems, one of

the most important strategy consists in implementing a dynamic structure regarding the

graph that reflects the necessary computations for processing the set of input data. In the

deep neural network's case, the easiest way of implementing the dynamic structure

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

167

approach consists in allocating properly the group of machine learning models that are

suitable for a certain set of input data [20].

Another important method, useful in improving the performance and reducing the

execution time for a data processing algorithm that implements the classification task,

consists in training and using a sequence of such algorithms (classifiers), thus obtaining a

cascade approach. This strategy is suitable for the cases when one aims to identify with

high accuracy the occurrence of rare objects or events.

The Google search engine's researchers have implemented the cascade approach in many

situations, for example when one wants to transcribe the numbers of the addresses that

have been identified using the Street View technology. They have used an authentication

method that comprises two steps. In the first step, the process detects the location of the

address number using a specific machine learning model. Afterwards, in the second step,

another model is used in order to transcribe the desired number [1].

Due to the undisputable advantages and usefulness of the deep learning neural networks,

the researchers are concerned about discovering and implementing more effective

strategies for improving the performance of these networks. This field of research

represents an open topic and a permanent challenge for the scientists, information

technology (IT) specialists, mathematicians, engineers and economists worldwide.

4. CONCLUSIONS

Lately, the deep learning class of machine learning algorithms become more and more

popular among researchers in various fields, such as speech, audio, graphics or pattern

recognition, processing of natural language and bioinformatics. Also, a wide range of

architectures relying on this concept have emerged, like deep, convolutional deep, deep

belief, recurrent artificial neural networks.

In our paper, we have first introduced the main concepts related to the deep learning

neural networks and their state of art from the literature. Afterwards, we have analyzed

implementation aspects of deep learning neural networks, we have revealed and justified

their undisputed usefulness in solving a great variety of applications, highlighting the fact

that the requirements of the developed applications influence the implementations and

scale sizes of deep learning neural networks. We have paid a special attention to the

analysis and comparison of the most popular deep learning libraries/toolboxes available

today and the programming language in which they were developed. We have also

highlighted the most important strategies for improving the performance of deep learning

neural networks implementations.

Taking into account the usefulness of deep learning neural networks, the benefits that they

offer in various research fields, in industry, in economy, in IT and games industry, the

possibility of implementing these networks in the GPUs and employ their huge parallel

computational power, we can conclude that the deep learning neural networks represent a

functional, practical and efficient solution for successfully achieving outstanding results

in a wide class of domains.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

168

REFERENCES

[1] Goodfellow I., Bengio Y., Courville A., Deep Learning (Adaptive Computation and

Machine Learning series), Publisher: The MIT Press, 2016, ISBN-10: 0262035618,

ISBN-13: 978-0262035613.

[2] Deng L., Yu D., Deep Learning: Methods and Applications (PDF). Foundations

and Trends in Signal Processing. 7 (3–4), pp. 197-387, 2013, DOI:

10.1561/2000000039.

[3] Lungu I., Pîrjan A., Petroşanu D. M., Solutions for Optimizing the Data Parallel

Prefix Sum Algorithm Using the Compute Unified Device Architecture, Journal of

Information Systems & Operations Management, Vol. 5, Nr. 2.1/2011, pp. 465-477,

ISSN 1843-4711.

[4] Petroşanu D. M., Pîrjan A., Economic considerations regarding the opportunity of

optimizing data processing using graphics processing units, JISOM, Vol. 6, Nr.

1/2012, pp. 204-215, ISSN 1843-4711.

[5] Padua D., Encyclopedia of Parallel Computing, Springer Publishing Company,

Incorporated, 2011, ISBN:0387097651 9780387097657, pp 689-697.

[6] Clarke D., Daoud’s Page on Github, 17 Great Machine Learning Libraries,

http://daoudclarke.github.io/machine%20learning%20in%20practice/2013/10/08/m

achine-learning-libraries, accessed on March 22, 2017.

[7] Tăbuşcă A., Learning a programming language for today, Journal of Information

Systems & Operations Management, Vol.9, No.1/2015, pp. 83-94, ISSN 1843-4711.

[8] Matthes E., Python Crash Course: A Hands-On, Project-Based Introduction to

Programming, No Starch Press, 2015, ISBN-10: 1593276036, ISBN-13: 978-

1593276034.

[9] Raschka S., Python Machine Learning, Packt Publishing ISBN-10: 1783555130,

ISBN-13: 978-1783555130, 2015.

[10] Teglor, http://www.teglor.com/b/deep-learning-libraries-language-cm569/, accessed

on March 22, 2017.

[11] Kaluza B., Machine Learning in Java, Packt Publishing, 2016, ISBN-10:

1784396583, ISBN-13: 978-1784396589

[12] Ierusalimschy R., Programming in Lua, Fourth Edition, Publisher: Lua.Org, 2016,

ISBN-10: 8590379868, ISBN-13: 978-8590379867

[13] Russel S., Sengupta A., Hanson L., Learning Julia: Rapid Technical Computing

and Data Analysis, O'Reilly Media, 2017, ISBN-10: 1491903600, ISBN-13: 978-

1491903605

[14] Pîrjan A., Petroşanu D. M., Dematerialized Monies – New Means of Payment,

Romanian Economic and Business Review, Vol. 3 Nr. 2/2008, pp. 37-48, ISSN

1842–2497.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

169

[15] Pîrjan A., Petroşanu D. M., A Comparison of the Most Popular Electronic

Micropayment Systems, Romanian Economic and Business Review, Vol. 3, Nr.

4/2008, pp. 97-110, ISSN 1842–2497.

[16] Bengio Y., Ducharme R., Vincent P., A neural probabilistic language model, in

Advances in Neural Information Processing Systems 13 (NIPS’00), pp. 932–938,

MIT Press, 2001.

[17] Recht B., Ré C., Wright S.J., Niu F., Hogwild: A lock-free approach to parallelizing

stochastic gradient descent, Advances in neural information processing systems 24

(NIPS 2011), Curran Associates, Inc, Red Hook, NY, USA, pp. 693–701, 2011.

[18] Dean J., Corrado G., Monga R., et al., Large scale distributed deep networks, In

Proceedings of Neural Information Processing Systems (NIPS), 2012.

[19] Bucilua C., Caruana R., Niculescu-Mizil A., Model compression. In: KDD ’06:

Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, New York, NY, USA, ACM (2006) pp. 535–541, 2006.

[20] Bengio Y., Deep learning of representations: Looking forward, in Statistical

Language and Speech Processing SLSP 2013, Lecture Notes in Computer Science,

vol. 7978, Springer, Berlin, Heidelberg, pp. 1-37, 2013, DOI: 10.1007/978-3-642-

39593-2_1.

