
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

487

AUTOMATIC IMAGE RESAMPLING FILTER GENERATION

Costin-Anton Boiangiu 1*

Ionut-Adrian Nitu 2

ABSTRACT

The digital world, that we’re in constant contact with, is filled with images of all sorts and

shapes. However, the resolution of some of those is just not good enough in several

scenarios: feature recognition, OCR, document processing, machine vision, and so on,

thus making the resampling of the images a very important step towards a correct

processing,

For the purpose of this work, several existing filters have been analyzed using a

comprehensive set of test images. The main goal is to create new filters by using different

approaches: genetic algorithms - by generating populations of filters and keeping the best

individuals based on a mean error criteria, brute-force solution searching– by selecting

the most efficient filters.

KEYWORDS: Image resampling, filtered resampling, downsampling, upsampling, Box,

Hermite, Triangle, Cubic, Lanczos, Mitchell, Bell, B-Spline, genetic algorithms, brute

force.

INTRODUCTION

With the current integration of multimedia into almost every aspect of daily lives,

consumers (people) are viewing visual data like images, video, on a wide variety of

products, ranging from computer screens to a large selection of handheld devices. Image

resizing [1, 2] is the process where an image is converted from one resolution/dimension

to another resolution/dimension with as low as possible detail loss, thus a certain

mechanism of interpolation is usually required.

There are two main categories of image interpolation algorithms: adaptive and non-

adaptive. In the latter category the computational logic is fixed regardless of the input

image features, whilst in adaptive algorithms computational logic is dependent upon the

intrinsic image features and content of the input image [2]. Interpolating from lower to

higher resolution is termed as upsampling and from higher to lower resolution is termed

as downsampling.

The paper at hand presents the students’ efforts, carried under the supervision of the first

author for the project of Document Image Analysis, aimed at finding, by any available

means, the most suitable filter functions for downsampling/upsampling purposes, filters

that are different from the “well-established” (classical) ones.

1* corresponding author, Professor PhD Eng., ”Politehnica” University of Bucharest, 060042 Bucharest,

Romania, costin.boiangiu@cs.pub.ro
2 Engineer, ”Politehnica” University of Bucharest, 060042 Bucharest, Romania, ionut.nitu@cti.pub.ro

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

488

RELATED WORK

Image resizing typically involves fractional resampling and can lead to prohibitively large

implementations resulting in compromises in color range and resolution.

Numerous digital image scaling techniques have been developed: nearest neighbor, linear

pixel interpolation, kernel-based B-Spline, Triangle, Hermite, Lanczos, Mitchell, and so

on. For example, Nearest Neighbor Interpolation [4] it is one of the fastest and simplest

forms of interpolation technique. During enlarging (up-scaling), the empty spaces will be

replaced with the nearest neighboring pixel. Shrinking, on the other hand, involves

reduction of pixels.

A notable work includes the solution proposed by Kopf et al. [5]. It is first calculated at a

low resolution, which is then upsampled using joint bilateral filtering. In Avidan and

Shamir [6], a content-aware image resizing algorithm was proposed. Rather than resizing

an image by scaling, this method carves out or inserts content using the image seams, the

pixels chains regarded as being of little importance.

In Hegde, Tuzel and Porikli [7] is presented an algorithm that comprises of two main

stages of processing in two layers: edge and detail. Firstly, for the edge layer, it is used a

nonparametric approach by constructing a dictionary of patches from a given image, and

synthesize edge regions in a higher-resolution version of the image. For the detail layer, a

global parametric texture enhancement approach serves to synthesize detail regions across

the image.

Despite an extensive research in this area, image scaling remains a computationally

expensive operation. Its cost is dominated by convolution, which is necessary to control

undesirable reconstruction and aliasing artifacts. Convolution may prove to be

prohibitively expensive, especially when large (high-quality) filter kernels or large scale

factors are applied. [8]

EXPERIMENTAL METHODOLOGY

Peak Signal to Noise Ratio (PSNR), is the ratio between the corrupting noise that affects

the fidelity of image representation and the maximum possible power of a signal [9].

PSNR is usually expressed in terms of the logarithmic decibel scale due to a very wide

dynamic range of signals. In this case, original data represents the signal, and the noise is

the error introduced by the succession of downsampling-upsampling operations. Highest

value of PSNR indicates the highest quality of image reconstruction, thus better

resampling quality.

Mean Square Error (MSE) quantifies the difference between values generated by an

estimate and the true quality being certificated. Lowest value of PSNR indicates the

highest quality of image.

Present testing is realized using downsampling followed by upsampling, measuring the

differences using PSNR.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

489

GENERATION OF UP/DOWNSAMPLING FILTERS

Evaluation of “well-established” filters

The first step was to evaluate some of the classical filters, such as the Box, Hermite,

Triangle, Bell, Spline, Lanczos3 and Mitchell filter. The point of this phase was to

determine whether there is a best filter for upsampling and a different best filter for

downsampling.

Table 1. Evaluation of “well-established” filters in upsampling/downsampling operations. Legend:

the better the filter performance, the darker the markup color

Down/Up Box Hermite Triangle Bell Spline Lanczos3 Mitchell

Box 287.037 260.667 265.642 282.34 298.357 245.71 261.839

Hermite 291.979 267.795 272.776 289.727 305.037 248.155 268.671

Triangle 296.641 274.967 279.559 295.749 310.37 254.127 275.287

Bell 308.552 292.317 296.452 310.785 323.774 271.008 291.89

Spline 320.687 307.241 310.911 323.809 335.553 286.723 306.38

Lanczos3 296.279 254.116 256.4 271.358 286.918 236.285 251.832

Mitchell 296.138 272.089 276.207 291.779 306.243 251.102 271.794

A genetic algorithm-based approach

Following the desire of obtaining a better filter, the first proposed approach is geared

towards running genetic algorithms to generate populations of new filters and test their

behavior in a manner similar to natural selection.

Rather than representing the filters as mathematical functions, which does not permit

combining two filters in an easy fashion, filters can be represented in a discrete manner,

by storing the value of the filter in certain points and interpolating the values in between.

If the distance between the coordinates of the points is constant, then the range in which

one needs to search to obtain the value in the desired point can be determined in constant

time.

An individual fitness function is used in the method of evaluation, and so it promotes

individuals which are better and should be kept in the further generations. For the

proposed solution, the fitness is represented by the average MSE for that filter when

running downsampling followed by upsampling on a certain set of images at different

scales.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

490

Two individuals are selected from the current population and combined to obtain new

ones. The strategies used are:

 Strategy 1: average each point.

 Strategy 2: average with a 3x3 window. This helps smoothing the curves.

 Strategy 3: select each point either from one individual or the other. This is run

twice (2 new individuals are created).

In order to obtain a more diverse population, mutations occur for a random number of the

new individuals. A mutation simply implies that some of the points of the discrete filter

are altered.

When a new era starts and a generation is created, the better half of the individuals (sorted

by MSE) randomly chose a partner to recombine with. Each pair creates four new

individuals. The entire population is sorted by its fitness and only the best individuals

survive to the next generation by either adding or subtracting a random number.

Table 2. MSE results on different scales and filters. Legend: The best filter performances are

written with bold font.

Filter

Type

Scale

1.5

Scale

2.0

Scale

2.5

Scale

3.0

Scale

3.5

Scale

4.0

Scale

4.5

Scale

5.0

Box 4023.126 232.315 1736.314 242.555 1108.519 360.432 917.524 460.8

Hermite 55.26 95.035 145.789 199.712 254.844 306.536 361.743 413.003

Triangle 158.377 106.276 189.241 227.301 289.715 343.308 401.47 450.88

Bell 91.759 155.344 225.446 296.803 365.813 429.552 490.957 546.759

B-Spline 118.437 196.452 278.102 358.141 432.735 500.304 563.161 619.307

Lanczos 23.595 50.353 82.121 120.844 164.746 210.007 258.763 307.383

Mitchell 51.137 94.925 146.335 202.671 260.673 316.784 374.123 427.731

Proposed 451.941 363.693 461.467 701.974 608.837 877.197 863.227 718.165

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

491

Figure 1. The evolution of filters – 10, 50, 100 individuals

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

492

Figure 2. Best generations – 10, 50, 100 individuals

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

493

Figure 3. Convergence: MSE per generation for a population of 10, 50, 100 individuals

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

494

Another genetic algorithm-based approach

Among the best of classical filters is the Lanczos3 filter, which is defined on the interval

[-3, 3] and is based on the “sinc” function. The question then becomes: is there another

function, similar to the Lanczos3 – very close in the solutions space – that performs better

than it?

There are multiple ways in which one may search for a neighbor it the Lanczos3 function.

A very quick and simple way would be to modify the function slightly – there are many

ways in which this can be performed – and check if the newly-generated function is

better; by better we mean that the mean squared error (MSE) of the new function is lower

than that of the original Lanczos3 function.

One key observation here is that this is basically an optimization problem: we have a very

clearly defined way to analyze and compare our new functions and at least one way in

which to generate new functions. Therefore we can use a genetic algorithm to find the best

solution. Unlike most optimization strategies and algorithms – such as hill climbing or A* -

genetic algorithms have the ability to preserve a seemingly bad solution, in the hope that it

may spawn a very good solution down the line – which may also avoid local maximums.

The method follows the basic selection-breeding-mutation pattern of any such algorithm,

with implementations specific to the problem at hand. The fitness function used is the

MSE value: a lower MSE means a fitter individual.

Given that a functions has a relatively complex structure and that it is recommended to

use a binary encoding for the individuals, the function is divided into position-based

intervals, which makes the breeding and mutation operations easier to implements.

The first generations of individuals is composed of identical specimens, which are all a

discretized version of the Lanczos3 function, with a relatively high number of samples

(upward of 10,000).

At each iteration, the best individuals are selected to breed. Breeding is an interpolations

of two equivalent intervals – same interval – from two selected individuals. In order to

distance ourselves from the original Lanczos3 function as much as possible, the intervals

chosen are those which are as dissimilar as possible from the original. To determine this,

each interval is tested, and the absolute differences of both individuals are added up, one

sum per interval. The interval with the highest sum, most different from the original, is

chosen for interpolation.

The result is that we are taking the interval from one individual and merging it into the

other. The small contribution of the original Lanczos3 function is there so that we don’t

obtain completely bogus results and we ensure that a neighboring function is generated.

After the breeding, we also keep a number of the best individuals from this generation,

into the next generation. This ensure that best solution found so far is not lost.

The last step is to mutate some of the individuals. Here, we select from a wider spectrum,

which includes some of the least fit individuals as well. The mutation itself is done by

either lowering or raising all the values in a randomly chosen interval using a randomly

generated value, linearly around the center of the interval, as shown in figure 4.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

495

Figure 4. Linear raising of the values inside an interval

All of the above steps are done for a fixed number of iterations and, at the end, the best

individual is selected as the final solution.

After a new individual is created – either by breeding or mutation – its fitness value must

be computed. This is a very costly operation, as the filter needs to be used in multiple

downscaling/upscaling calculations, performed on multiple images in order to determine

its MSE. Given that the breeding and mutation steps are exactly the same, no matter

which individuals are selected, and that they require a calling of the fitness function, they

have been parallelized using OpenMP technology, in order to reduce the time need to run

the entire algorithm – by increasing the throughput.

To give a sense of the runtime costs, on an Intel Core 2 Quad processor, clocked at 3.2

GHz with 4 GB or RAM, one iterations requires approximately 2 minutes to complete.

The filter found by the algorithm produced better results – there were no negative

improvements, with a mean improvement of 3.5 %. Lower scales provided the best

results, the maximum being an increase of 13.32 % over the original Lanczos3, at scale

1.5. As the scale was raised, the difference between the functions became smaller, almost

insignificant in some cases, leading to the overall small 3.5% improvement.

The joint Bezier curves approach

The basic idea comes from the study of Lanczos (“sinc”-based) functions. The proposed

algorithm creates quadratic Bezier curves on some specific markups and interpolates the

distances between them. By using Bezier curves only on some specific spots, we reduce

by a large amount the searching space. The values between curves are obtained by linear

interpolation.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

496

Figure 2. Placement of the Bezier curves

The Bezier curve are adjusted based on the previous results. For example, we start by

choosing the Bezier curve which provided the best signal-convolution values when the

input value was between [0, 1] (which is the case of the first Bezier curve). Processing

each next Bezier was done based on the results of the previous one.

The primary impediment was selecting the exact ROI (Region Of Interest). The starting

point is Lanczos3 because it provided the best results on tests. After setting the location of

Bezier curves, the next problem was the large spectrum of possibilities that a curve

parameters may have.

Table 3. MSE results on different scales and filters. Legend: The best filter performances are

written with bold font.

Filter

Type

Scale

1.5

Scale

2.0

Scale

2.5

Scale

3.0

Scale

3.5

Scale

4.0

Scale

4.5

Scale

5.0

Lanczos64 32.867 83.738 124.140 153.505 176.009 194.806 210.997 225.246

Lanczos3 49.846 98.752 138.652 167.539 191.277 209.758 224.687 239.294

Proposed 56.567 110.183 151.862 174.874 196.613 219.325 231.672 250.859

Mitchell 87.059 134.002 169.426 196.414 218.783 238.004 255.768 271.794

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

497

The brute-force windowing approach

We will start with the following assumptions:

 A good filter function will need to contain the “sinc” function along with a

suitable windowed function. The problem reduces itself at finding the most

suitable windowed function.

 A suitable windowed function can be a cosine series function:

∑𝑎𝑖 ∗ cos(𝜋 ∗ 𝑖 ∗
𝑡

𝑁
)

𝑀

𝑖=0

;

where: ∑ 𝑎𝑖 = 1;𝑀 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑒𝑟𝑚𝑠;𝑁 = 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒𝑀
𝑖=0

Trying out all the possible combinations for the ‘a’ terms, we conclude that the best

results are indeed for a window that has the largest ripple in the first position and smaller

ripples following. Thus, for testing purposes, a0 will vary between 0.4 and 0.6 regardless

of the number of terms.

An application was created that backtracks the ‘a’ terms such that their sum is equal to 1,

and tested all possible combinations on several images and for various scales. Various

numbers of terms were used. Besides this, the window of the filter was varied.

Because of memory management and efficiency needs, the algorithm pseudocode is the

following one:

Foreach term_count:

 Backtrack over all possible terms combinations and store then in a

global array

 When reaching a limit L, process the gathered combinations (because

of limited memory):

 Foreach image,

 Foreach scale

o Foreach window

 Foreach term_combination

 Compute MSE and store result

 Cycle through the results, pick the best for each pair

<image , scale>, remember just those and discard the rest

 Continue the backtrack writing the new combinations over the old ones

in the global array (so no allocation time is wasted).

The larger the filter window, the better the PSNR. However, testing a window of 3 versus

a window of 70 just gave a means of a 10% increase, but a huge increase in processing

time. Thus, for testing a larger number of terms, we chose a fixed window of 4.

The best results were obtained for an a0 term between 0.4 and 0.6, meaning a strong main

ripple followed by small secondary ripples. The best general results of fully testing 2 and

3 terms filters are the following: [0.49, 0.49, 0.02] closely followed by [0.51, 0.49].

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

498

The brute-force by backtracking approach

The proposed approach consists in generating all possible filters using backtracking. The

relevant values belong to the filtering function graph. Other values are obtained by linear

interpolation.

There are available two methods of generating filters. In the first method, generated

functions can have values from the interval [-1, 1]. The disadvantage is that in this way

there are generated many inaccurate filters. Using the other method, generated functions

will have closer values to a stable filter.

To be able to perform upsampling and downsampling of images, the resulting filters are

normalized. The values are close to Lanczos filter. For searching functions there were

considered 13 points on horizontal axis and 5 on vertical axis. This is, of course, a

strongly sub-optimal searching space. It is perhaps the approach that may lead to the best

solution for a set of input images but also, impossible to implement using a fine

granulation, due to the huge brute-force complexity.

Figure 3. The brute-force by backtracking approach evolution (3 milestones)

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

499

Table 4. MSE results on different scales and filters. Legend: The best filter performances are

written with bold font.

Filter

Type

Scale

1.5

Scale

2.0

Scale

2.5

Scale

3.0

Scale

3.5

Scale

4.0

Scale

4.5

Scale

5.0

Box 4668.875 254.158 1609.515 183.285 1146.723 304.669 918.518 351.562

Hermite 43.740 71.198 105.484 135.434 167.569 196.987 224.749 255.110

Triangle 124.510 71.198 126.687 149.781 185.393 208.648 244.758 275.346

Bell 68.778 109.490 149.429 188.006 226.622 262.047 295.006 329.829

B-Spline 84.815 131.984 177.501 220.681 262.969 301.332 337.074 373.629

Lanczos 25.641 50.033 74.504 99.347 125.318 150.386 173.411 202.016

Mitchell 42.701 74.266 107.098 138.517 171.129 201.685 230.190 262.046

Proposed 35.851 46.292 83.306 99.884 133.766 151.899 175.897 200.004

Brute-force Bezier generator approach

Implementing filtering on GPU has efficient results, easily obtaining 50 times speed-ups,

comparing to the classic implementation on CPU. A brute-force method is used to detect

other classes of filters as efficient as the ones in literature.

Filters are obtained by interpolation of a Bezier Cubic Curve with 4 control points. First

point is always fixed, otherwise leading to redundancy.

From the Bezier Curve resulted after running an optimal search algorithm of Brute-Force

Greedy type, or after user’s manual parametrization, there are extracted N points {x,y}

that represents filter discretization. The number of points must be chosen in such a way

that the resulting Bezier Curve is not be affected by consecutive interpolation of values.

For the actual carried tests, N is 101.

A binary search approach is used for getting the filter value in a point. The value that is

returned will be the result of linear interpolation (Y-axis) of the 2 points resulted after

running the binary search.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

500

Table 5. MSE results on different scales and filters. Legend: The best filter performances are

written with bold font.

Filter

Type

Scale

1.5

Scale

2.0

Scale

2.5

Scale

3.0

Scale

3.5

Scale

4.0

Scale

4.5

Scale

5.0

Box 131.56 151.727 288.279 336.639 376.511 329.401 545.951 517.142

Hermite 102.391 135.55 223.602 274.268 291.813 281.613 420.985 333.657

Triangle 95.9473 135.55 235.093 243.197 281.054 293.657 437.536 409.742

Bell 132.036 183.865 227.969 266.085 301.987 331.66 390.504 394.206

B-Spline 155.828 209.092 256.181 296.13 332.428 364.734 399.56 426.853

Lanczos 59.8015 104.73 168.13 175.591 204.913 232.962 274.732 312.508

Mitchell 94.951 140.487 184.127 219.389 251.364 278.261 310.606 333.657

Proposed 59.6421 109.884 144.303 178.847 208.466 233.698 287.02 289.303

CONCLUSIONS AND FUTURE WORK

Although the results are good, they are not extraordinary. This leads to the natural

question of whether we can significantly improve already great filters like those in the

Lanczos family on every input image set. However, we have found that on fixed image

sets and with fixed resampling scales, with enough time to let the filter function search

operation work, valuable results different from the classical ones may be found.

The best filters found were of type “sinc” with cosine series windows. As the number of

terms increases for the window, the results improved, but so the time spent on brute-force

searching of the result. If this algorithm will be run on a cluster of GPUs, the

computational time would be decreased dramatically and better results shall be found.

Even though, the resulted filters may obtain a better MSE than the classical,

mathematically-defined ones. The results clearly show that this approach is viable and

that it has potential for obtaining filters specialized for particular classes of images.

In the genetic approach department, it is visible in the evolution of the filters that they

converge to a lower average MSE and that for a larger population there is more diversity

among the individuals. Considering this observation, a higher mutation rate could be used

to obtain a more diverse population and hence avoid being stuck in a local minimum.

Furthermore, other recombination or mutation techniques could be used to generate new

individuals.

The advantages of the Brute-Force Bezier Generator is that it restraints the search region

of each Bezier curve to a specific zone. The next logical step is to use cubic Bezier curves

and to try to find more exactly what the best values for each resampling scale are. An

algorithm that could function in this case and reduce the computational time is the one

that advances only in the direction which gives best result.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

501

The proposed methods could be used to find new filters that could be even better than

those available. For the Genetic-Based approach there are many changes that could

potentially enhance the method. We are in disadvantage because this is in essence a blind

search – meaning that we don’t know what the perfect filter should look like – so it

becomes a case of trial and error.

The way individuals are bread and mutated may have a tremendous effect on the results.

For example, when breeding individuals, we could merge two intervals instead of just

one; the same with mutation. The best strategy would be to generate more output data for

each step of the algorithm and then develop a tool that can analyze and find out which

change has the greatest effect and where it is best to invest the most effort.

Finding a good, solid resampling filter may lead to immediate benefits in other related

research areas like image storage using pyramidal approaches [11][12] or even super-

resolution [13] or image deblurring [14].

ACKNOWLEDGEMENTS

The authors would like to thank students Sorina Sandu, Sabina Batranu, Ciprian Apetrei,

Gabriel Ivanica, Victoria Sima, Alexandru Anghelache, Dorian Dogaru and Dragos

Dumitrescu for their great support and assistance with this paper.

REFERENCES

[1] E. Ethan, S. Agaian and A. Panetta, “Algorithms for the resizing of binary and grayscale

images using a logical transform”, SPIE Proceedings Vol. 6497:

[2] Image Processing: Algorithms and Systems V, 64970Z, 27 February 2007.

[3] S. Saffinaz ,”An Efficient Algorithm for Image Scaling with High Boost Filtering”,

International Journal of Scientific and Research Publications, Vol. 4, Issue 5, May 2014, p.

1-5, ISSN 2250-3153.

[4] R.D. Turney and C.H. Dick, "Real Time Image Rotation and Resizing, Algorithms and

Implementations", 1999, [online] Available: http:// www.xilinx.com / products/ logicore/

dsp/ rotation_resize.pdf , Accessed at: 11 May 2016

[5] J.W. Hwang and S. Lee, “Adaptive Image Interpolation Based on Local Gradient Features”,

IEEE Signal Processing Letters, Vol. 11, Issue 3, March 2004, p. 359 – 362, ISSN :1070-

9908.

[6] J. Kopf, M. Cohen and D. Lischinksi, “Joint bilateral upsampling”, ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2007), Vol. 26, Issue 3, 2007.

[7] S. Avidan, A. Shamir, “Seam carving for content-aware image resizing”, 2007, [online]

Available: http:// perso.crans.org/ frenoy/ matlab2012/ seamcarving.pdf, Accessed at: 12

May 2016

[8] C. Hegde, O. Tuzel and F. Porikli , „Efficient Upsampling of Natural Images”, 28 February

2015 , [online] Available: https:// www.researchgate.net/ publication/

273067650_Efficient_Upsampling_of_Natural_Images, Accesed at: 16 May 2016.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

502

[9] Y. HaCohen, R.Fattal, D. Lischinski, „Image Upsampling via Texture Hallucination”,

Computational Photography (ICCP), 2010 IEEE International Conference on, 29-30 March

2010, p.1-8, Print ISBN: 978-1-4244-7022-8.

[10] M. Markandeshwa, „Comparison Of Different Image Enhancement Techniques Based Upon

PSNR & MSE”, International Journal of Applied Engineering Research, 2012, Vol.7, Issue

11, ISSN 0973-4562

[11] Emil Calofir, Radu Ionut Dan, Vlad Lionte, Ion Bucur, “Image Reconstruction after A

Succession of 2:1 Downsampling – Upsampling”, Journal of Information Systems &

Operations Management (JISOM), the Proceedings of Journal ISOM Vol. 8 No. 2, pp. 252-

261, December 2014

[12] Mihai Cristian Tănase, Mihai Zaharescu, Ion Bucur, “2:1 Upsampling-Downsampling

Image Reconstruction System”, Journal of Information Systems & Operations Management

(JISOM), the Proceedings of Journal ISOM Vol. 7 No. 2, pp. 294-299, December 2013

[13] Florin Manaila, Costin-Anton Boiangiu, Ion Bucur – “Super Resolution From Multiple Low

Resolution Images”, Journal of Information Systems & Operations Management (JISOM),

the Proceedings of Journal ISOM, Vol. 8 No. 2, pp. 316-322, December 2014

[14] Alexandra Ghecenco, “Principles of Image Deblurring”, Journal of Information Systems &

Operations Management (JISOM), the Proceedings of Journal ISOM, Vol. 8 No. 2, pp. 488-

497, December 2014.

