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Abstract 

To curb the surge of worldwide climate change, renewable energy generation units like 

wind farms need to stay fiscally reasonable for empowering the green power conversion. A 

significant portion of the profitability of wind farms is lost each year across the globe to 

mechanical breakdown. This present paper aims to optimize the design of wind turbine 

actuator bearing using artificial intelligence techniques to enhance operational life. Two 

Bio-inspired algorithms like multi-objective genetic algorithm and multi-objective moth 

flame optimization algorithms have been employed simultaneously to maximize the static 

and dynamic capacities of the wind turbine actuator bearing. The analysis outcomes 

demonstrate the higher proficiency of the multi-objective moth flame optimization 

algorithm over the multi-objective genetic algorithm to optimize the considered objectives 

subjected to similar constraints and other optimization parameters. The solutions attained 

using both the optimization algorithms confirm a significant increase in static and dynamic 

capacities of the wind turbine actuator bearing when compared with the standard industrial 

catalogue values.  

Keywords: Wind Power, Actuator Bearing, Multi-Objective Genetic Algorithm, Multi-
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1. Introduction 

The unremitting emanation of greenhouse gases to the surroundings because of numerous 

societal doings is swelling the air temperature and anomalous climatological situations. As 

a result of the universal trepidation for the constrained supply of fossil fuels and their grave 

forfeits on flora and fauna, renewable sources of electricity impart proliferating locums.  
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Surprisingly, the utilization of renewable energy expanded by 3% in 2020, while the 

necessity for non-renewable fuels crashed across the world. Wind energy, specifically, is an 

imperative and economical approach to renewable power generation. Universally, the 

charge of power generation from airstream has minimized precipitously over the past 

decades.  

In India, the generation cost of wind power is already 35% lesser than that of the electricity 

generation establishments principally reliant on coal and this is tending to another reduction 

of 7% in 2022. Systematic ventures are underway to curtail the overall charge of the Wind 

Power Generation (WPG) by reducing the expenditures associated with operative and 

maintenance undertakings engaging safety and prognosticative actions.  

Studies affirm that mechanical breakdown is accountable for 55.90% of the complete value 

of insurance entreaties and 32.50% of the full number of appeals related to WPG. The profit 

shortages underwent by the WPG segment because of the WT malfunction can vary from 

200 M€ in Spain or 700 M€ in the whole region of Europe to 2200 M€ in the remaining 

regions of the Earth. 

 

2. Literature Review 

Gallego-Calderon et al. (2015) analyzed the consequence on reliability for Cylindrical 

Roller Bearing and Tapered Roller Bearing arrangements of planetary bearings of WPG 

system gearbox. Ni et al. (2017) considered the issues allied to the rolling element bearing 

of WPG transmission assembly by applying the field data of the Lu Nan wind farm of PR 

China. Micha et al. (2017) recommended the appliance of stable magnetic bearing in 

vertical axis small WT employing finite element analysis and multi-physics software for 

enhancing the turbine speed and revolving phase.  

Stammler et al. (2018) investigated the impact of oscillation on the damaging lifetime of 

WT pitch rolling bearing. Schwack et al. (2020) checked the influence of grease lubricants 

on abrasion of WT pitch bearing. Fuentes et al. (2020) recommended a technique to 

recognize the sub-surface dent of WT bearings with sound release and probabilistic 

representation. Nicholas et al. (2020) proposed an inventive ultrasonic reflectometry 

approach to analyze the loading and lubrication condition of WT high-speed shaft bearing 

utilizing piezoelectric transducers. 

The studies conducted on WT bearings are mostly mono-objective and the optimization of 

WT actuator bearing is yet to be explored. The present study aims to optimize the design of 

actuator bearing of Wind Turbine (WT). Due to the involvement of multiple objectives, 

Artificial Intelligence (AI) techniques have been utilized in the current design optimization 

situation. AI-enabled approaches have been exercised across numerous engineering fields 

for their robustness and computational proficiency.  

In the current work, the Multi-Objective Moth Flame Optimization Algorithm (MOMFOA) 

has been proposed for optimizing the design of the WT actuator bearing. The optimization 

results have been contrasted with the same realized using the Multi-Objective Genetic 

Algorithm (MOGA) and engineering catalogue standards to estimate their comparative 

effectiveness. 
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3. Objective Function 

The goal parameters taken into account in the present study are maximization of the static 

and dynamic capacities of the WT actuator bearing. The objective functions have been 

concisely reviewed in subsequent segments. 

 

3.1 Static Capacity (Cstatic) 

The static capacity is termed as the load functioning on an immobile bearing that can impact 

the long-term alterations ensuing at the spot of the topmost-burdened rotating constituent. 

The static capacity for the internal race (Cstatic, internal) can be calculated as per Eq. (1). 

 𝐶𝑠𝑡𝑎𝑡𝑖𝑐,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =  
23.8𝑍𝑖𝐷𝑏

2(𝑎𝑖
∗𝑏𝑖

∗)3 𝑐𝑜𝑠 𝛼
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2𝛾
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 (1) 

In Eq. (1), z signifies the quantity of revolving elements. i characterize the count of rows of 

balls. Db represents the diameter of rolling elements. ai* and bi* denote the dimensionless 

semi-major and semi-minor axes for the internal ring respectively. α stands for the contact 

angle. fi is the internal curvature parameter. The static capacity of the external race (Cstatic, 

external) is formulated using Eq. (2). 

 𝐶𝑠𝑡𝑎𝑡𝑖𝑐,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =  
23.8𝑍𝑖𝐷𝑏
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−
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In Eq. (2), ao* and bo* represent the dimensionless semi-major and semi-minor axes for the 

external race respectively. fo stands for the external curvature parameter. γ is evaluated using 

(3). 

 𝛾 =  
𝐷𝑏 𝑐𝑜𝑠 𝛼

𝐷𝑚
 (3) 

In Eq. (3), Dm represents the pitch diameter of the bearing. The static capacity of the entire 

bearing can be formulated as per Eq. (4). 

 𝐶𝑠𝑡𝑎𝑡𝑖𝑐 =  𝑚𝑖𝑛 (𝐶𝑠𝑡𝑎𝑡𝑖𝑐,𝑖𝑛𝑛𝑒𝑟 , 𝐶𝑠𝑡𝑎𝑡𝑖𝑐,𝑜𝑢𝑡𝑒𝑟) (4) 

 

3.2 Dynamic Capacity (Cdynamic) 

The Dynamic capacity of rolling-element bearing can be defined as the firm radial load, 

which a pool of speciously alike bearings can stand for a valuation lifecycle of one million 

spins of the interior raceway. It can be defined using Eq. (5). 

 𝐶𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = {
𝑓𝑐𝑧

2

3𝐷𝑏
1.8,                      𝐷𝑏 ≤ 25.4 𝑚𝑚

3.647𝑓𝑐𝑧
2

3𝐷𝑏
1.4,            𝐷𝑏 > 25.4 𝑚𝑚

 (5) 

In Eq. (5), fc is a geometry-related parameter. 
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4. Constraints 

The constraints specified by Duggirala et al. (2018) have been implemented in the present 

work. The rolling element number and rolling element diameter are related as per Eq. (6). 

 𝑆1(𝑋) =  
𝜙0

2 𝑠𝑖𝑛−1(
𝐷𝑏
𝐷𝑚

)
− 𝑧 + 1 ≥ 0 (6) 

In Eq. (6), ϕ0 symbolizes the bearing assembly angle. The rolling element diameter is 

maintained within a limit as per Eqs. (7) and (8). 

 𝑆2(𝑋) =  2𝐷𝑏 − 𝐾𝐷𝑚𝑖𝑛
(𝐷 − 𝑑) ≥ 0 (7) 

 𝑆3(𝑋) =  𝐾𝐷𝑚𝑎𝑥
(𝐷 − 𝑑) − 2𝐷𝑏 ≥ 0 (8) 

In Eqs. (7) and (8), D and d represent the external and internal diameters of the bearing 

respectively. KDmin and KDmax are fractional parameters between 0 and 1. They are related to 

the bearing geometry. Bearing thickness is associated with the rolling element diameter as 

per Eq. (9). 

 𝑆4(𝑋) = 𝜁𝐵𝑤 − 𝐷𝑏 ≤ 0 (9) 

In Eq. (9), ζ is a fractional factor between 0 and 1. The pitch diameter can be evaluated as 

per Eqs. (10) and (11). 

 𝑆5(𝑋) =  𝐷𝑚 − (0.5 − 𝑒)(𝐷 + 𝑑) ≥ 0 (10) 

 𝑆6(𝑋) = (0.5 + 𝑒)(𝐷 + 𝑑) − 𝐷𝑚 ≥ 0 (11) 

In Eqs. (10) and (11), e is a parameter ranging between 0 and 1. The breadth at the exterior 

raceway is related to pitch diameter and rolling element as per Eq. (12). 

 𝑆7(𝑋) = 0.5(𝐷 − 𝐷𝑚 − 𝐷𝑏) − 𝜀𝐷𝑏 ≥ 0 (12) 

In Eq. (12), ε is a fractional parameter between 0 and 1. 

 

5. Optimization Algorithm 

Each usual design optimization procedure comprises several aims allied to a constituent 

domain and single or multiple constrictions. Every multi-criteria optimization may be 

quantified using Eq. (13). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒⁄ 𝑓𝑡(𝑥),       𝑡 = 1,2, . . . 𝑇; 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,  𝑆𝑖(𝑥) ≥ 0, 𝑖 = 1, 2, … 𝐼; 

ℎ𝑗(𝑥) = 0,        𝑗 = 1, 2, … 𝐽; 

𝑥𝑘
(𝐿) ≤ 𝑥𝑘 ≤ 𝑥𝑘

(𝑈)  𝑘 = 1, 2, . . . 𝐾. 
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  (13) 

In Eq. (13), x signifies the evaluation vector, ft(x) stands for the tth goal, Si(x) symbolizes 

the ith inequality constriction, and hj(x) represents the jth equality restriction.  

The collection of non-subjugated resolutions shapes the Pareto optimum frontage. MOGA 

and MOMFOA have been engaged in the current study to maximize the static and dynamic 

capacities of WT actuator bearing.  

The algorithms have been briefly described in the following sub-sections. 

 

5.1 Multi-Objective Genetic Algorithm (MOGA) 

Genetic Algorithm (GA) is a bio-stimulated exploration method to recommend resolutions 

for optimization efforts to emulate the progression of biological choice as projected by 

Turing. MOGA has been applied to optimize numerous aims correlated to various technical 

domains.  

The MOGA employed in the existing study has been offered as follows. 

1. Appoint the parameters of MOGA.  

2. Organize the initial chromosomes arbitrarily. 

3. Analyze the appropriateness of all chromosomes. 

4. Execute the arithmetic crossover procedure. 

5. Accomplish the mutation technique. 

6. Examine the aptness of the existing entities shaped utilizing crossover and mutation 

measures. 

7. Complete the dominance estimation. 

8. If the satisfactory count of solutions vital for Pareto frontage composition is realized, 

then terminate, else recommence. 

9. Pick out the utmost brilliant and agreed resolution consistent with the assessment 

maker’s penchant. 

 

5.2 Multi-Objective Moth Flame Optimization Algorithm (MOMFOA) 

Being inspired by the direction-finding of the moth, Mirjalili (2015) proposed the Moth 

Flame Optimization Algorithm (MFOA).  

MFOA has been utilized in several engineering applications. MOMFOA can be briefly 

stated as follows. 

1. Initialize the factors for MOMFOA. 
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2. Create the preliminary moths arbitrarily. 

3. Compute the aptness for each moth and label the finest locations concerning the flames. 

4. Revise the flame count, moth position, and convergence rate. 

5. Compute the gap between a moth and the corresponding flame. 

6. Modify the population of moths. 

7. If the termination criteria are accomplished, then finish, else return to step 3. 

8. Register the preeminent locations of the moths. 

 

6. Appliance 

In the present research study, WT actuator bearing has been taken into account.  

The related parameters have been sustained within rigid boundaries following the 

engineering catalogue obtainable for WT of power rating from 1.5 MW to 3.0 MW. 

Bw ~ {16,22} 

d ~ {25,80} 

D ~ {62,125} 

Db ~ {8,15} 

Dm ~ {0.5(D-d), 0.6(D-d)} 

e ~ {0.02,0.10} 

fi ~ {0.515,0.52} 

fo ~ {0.515,0.52} 

KDmax ~ {0.6,0.7} 

KDmin ~ {0.4,0.5} 

ε ~ {0.3,0.4} 

ζ ~ {0.6,0.85} 

Table 1 Limits of Parameters 

 

7. Results and Discussion 

For both the optimization algorithms, the considered population dimension has been 200. 

MOGA and MOMFOA have been iterated 200 times. The static and dynamic capacities of 
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the deep-groove WT actuator bearing have been measured in kN. The Pareto fronts 

achieved for both the optimization algorithms have been displayed in Figs.1 and 2. 

 

Figure 1. Pareto Front Obtained using MOGA 

 

Figure 2. Pareto Front Obtained using MOMFOA 

The graphic illustrations of the optimization run applying the projected MOMFOA 

demonstrate more optimized results while contrasted with the solutions achieved using the 

MOGA method for analogous aims and constrictions.  

The optimization outcomes attained using both of the AI-enabled algorithms have been 

compared with the standard engineering catalogue values and a significant increase in the 

objectives has been proved. 

 

8. Conclusion 

The results of MOMFOA ascertain a noteworthy growth in static and dynamic capacities 

of WT actuator bearing when evaluated against technical catalogue standards and the 

outcomes achieved using MOGA.  
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This study would initiate new openings for other WT apparatuses to decline the deficits in 

the operative period and fiscal return because of mechanical failures by competently 

refining the design procedure.  

The appliance arena can be pushed to further renewable power generation mechanical 

mechanisms. More AI applications may be applied in the upcoming period for design 

optimization. 
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