
Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 250 / 283

FLUTTER TECHNOLOGY AND MOBILE SOFTWARE APPLICATIONS

Alexandru TĂBUȘCĂ1

Cristina COCULESCU2

Mironela PÎRNĂU3

Abstract

Nowadays, many companies that develop mobile software applications have to develop the

same application for the iOS and Android operating systems in parallel. Thus, the costs for

creating the application will be higher because there have to be two teams of programmers.

They have to work in parallel on the two platforms and to collaborate with each other, so

that the developed application complies with requirements of design, planning and

operation. The use of cross-platform frameworks allows the simultaneous development of

an application for both the iOS and Android systems, generally using a platform-specific

programming language, and the application code will be transposed and compiled into a

dedicated code for each individual platform. Flutter technology is successfully used for the

development of mobile applications, which contain a very good user interface and a

technology which is simultaneously adapted to several platforms. Basically, the same code

can be used for a web application that runs in a browser and can adapt itself to iOS,

Android, Windows, MacOS or Linux platforms. Flutter is a development framework for

front end, web development, UI, implemented by Google, being completely independent

of the platform and can run both on IOS and Android systems, both as a web application

and as a Windows application.

Keywords: Flutter, Dart, mobile software

JEL Classification: C88

1. Introduction

Flutter is a software development kit (SDK) created by Google under an open-source

license. Initially, it was presented at the Dart Conference in 2015, and was called "Sky". It

was designed as the main method of developing applications for the Fuchsia operating

system (the operating system that later and gradually merged Android and ChromeOS). The

latest Flutter version has three main components:

- Embedder – specific to the platform (iOS or Android)

1 PhD Associate Professor, Romanian-American University, School of Computer Science for

Business Management, tabusca.alexandru@rau.ro
2 PhD Associate Professor, Romanian-American University, School of Computer Science for

Business Management, coculescu.cristina@rau.ro
3 PhD Associate Professor, Titu Maiorescu University, Faculty of Informatics,

mironela.pirnau@prof.utm.ro

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 251 / 283

- Engine (the Flutter rendering engine)

- Framework - the foundation library and widgets.

Applications developed in Flutter are written using the object-oriented programming

language known as Dart. This programing language runs in a virtual machine written in

C/C++. For choosing the programming language, Google considered the following criteria:

- developers' productivity

- using an object-oriented programming language

- predictability of the language, for a high performance but also a fast memory

allocation, which is why Flutter is based on the fast and efficient allocation of small

portions of memory [1-2].

A unique feature of Flutter technology is that it draws each pixel independently. Compared

to React Native technology, it has internal widget collections – Cupertino for iOS and

Material for Android but does not use OEM widgets [3].

Framework

Dart

Material Cupertino

Widgets

Rendering

Animation Painting Gestures

Foundation

Engine

C/C++
Dart Skia Text

Embedder

Platform specific

Render Surface Setup

Native Plugins

Packaging

Thread Setup Event Loop Interop

Fig 1. Flutter components

The rendering engine is written primarily in C/C++ and provides support for the Skia

graphics library, but also links to development kits specific to both platforms, iOS and

Android. In Flutter, Skia is an open source 2D graphics library that contains APIs common

to a large number of hardware and software platforms.

The core library in Flutter is written in Dart and contains the core classes and functions

used to build applications. Each element of the graphical interface is represented by a

widget or a group of widgets.

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 252 / 283

2. Usage of Flutter Technology

To develop a Flutter application, we need to first install the software development kit (SDK)

from its home web address [4] - the archive taken into account at the moment of the article

elaboration is flutter_windows_3.3.8-stable.zip. The installation is done through the

flutter_console.bat file inside the flutter folder. Also, to run Flutter commands in the

windows console we need to add the path to the ".bat" script in the PATH system variable,

see Fig 2.

Fig 2. Adding of Flutter path

Flutter depends on the Android Visual Studio system through dependencies, so its

installation becomes mandatory. The latest versions of Android SDK, Android SDK

Platform-Tools and Android SD Build-Tools are installed with Android Visual Studio.

Android Studio is created by Google and is an IDE used to develop Android applications

[3]. In order to develop Flutter applications with Android Studio, it is necessary to install

Flutter (see Fig. 3) and Dart (see Fig. 4) plugins.

Fig. 3 Adding Flutter plugin to Android Studio

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 253 / 283

Fig. 4 Adding Dart plugin to Android Studio

After installing the Android Studio Application and adding the plugins (Fig 3. and Fig. 4.),

the flutter doctor command is run in the console. This command will perform an analysis

of the requirements and create a report with the information obtained, according to Fig. 5.

Fig 5. Flutter doctor

With the help of the command flutter create name_project (see Fig 6.) a new project is

created, and Flutter generates all the necessary files for a new application inside the

directory where this command is run. The new directory structure created contains the files

needed to generate the code in both Android and iOS.

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 254 / 283

Fig. 6. Project creation within Flutter environment

The project can be open with Visual Studio Code (Fig. 7) or Android Studio (Fig. 8).

Fig 7. Flutter Project opened with Visual Studio Code

Fig 8. Flutter Project opened with Android Studio

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 255 / 283

Testing the application on Android devices can be done by using a virtual machine created

in Android Virtual Manager (Fig. 9) or by using a physical device connected via USB.

Fig 9. Create a new device within Android Virtual Manager

Android Virtual Manager is an emulation platform for devices using the Android operating

system. It allows the creation of virtual machines of any version of the operating system,

which will then run inside a Microsoft Windows window. Testing the application on the

physical device is done by activating USB debugging in the phone’s settings and

connecting it using the USB cable. The user interface, after the correct running of the

application, looks like in Fig 10.

Fig 10. Interface of the current application

3. Widgets of Flutter

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 256 / 283

Each element of the graphical interface is represented by a widget or a group of widgets.

In Flutter, a widget represents [3] a description of a graphical element that can be:

• a structural element: a text, an image, a shape, a button

• a styling element: font, color

• a schematic element: border, padding

Widgets form a composition-based hierarchy. Each widget is placed inside another, from

which it inherits properties. There is no separate "application" object, this role being taken

by the root widget. In Flutter, interaction with the user is given by updating the widget

hierarchy, this is done by comparing the new widget with the old one, only the different

elements being modified. Complex Widgets can also be created by combining several

simple Widgets. In Flutter, the used widgets are not the native ones from the platforms the

app runs on (Android or iOS) but they are specific representations, because Flutter contains

a rich set of widgets, layouts and themes for each platform (such as Material Design for

Android and Cupertino for iOS). In Flutter, widgets are divided into two categories:

- StatelessWidget

- StatefulWidget.

The StatelessWidget widgets are those widgets whose state does not change (such as for

example: Text, Icon, IconButton) and do not depend on other components in the interface.

A StatelessWidget widget has the role of describing part of the user interface by recursively

building other widgets that form the user interface. The build process continues recursively,

as shown in Fig. 11. In any Flutter application, the entry point is the void main() function

in the main.dart file. This function calls, using the shorthand syntax, the runApp function

with the constructor of the root widget class as a parameter. Flutter comes with the package

called material.dart, which allows rapid development of an application because it contains

all the basic widgets. Flutter can also import external packages that can be found at the link:

https://pub.dartlang.org/flutter. In our case, MyApp is the root widget of type

StatelessWidget that overrides the build method (see Fig. 11).

import 'package:flutter/material.dart';

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {

 const MyApp({Key? key}) : super(key: key);

 static const String _title = 'Application user and password';

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: _title,

 home: Scaffold(

 appBar: AppBar(title: const Text(_title)),

 body: const My_StatefulWidget(),

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 257 / 283

),

);

 }

}

Fig. 11 Listing of code

Building widgets is done by implementing the build function, as shown in Fig. 12, which

returns a hierarchy of widgets. When building the user interface, Flutter will recursively

call the build function of each widget returned by the initial function. The structure of an

application's component elements in Flutter is tree-like, where each node in the tree is

represented by a widget. As these do not store location information in the tree, the concept

of BuildContext arose. Widgets rebuild each time the app's internal state changes. To

accomplish this, the build method is called, which receives a parameter of type

BuildContext, where context is an instance of this class. Determining the position in which

a certain widget is found in the interface, but also the position where it should end up, is

done using BuildContext, a context that helps to position it correctly in the application

stack. The child parameter is often used in Flutter widgets and represents the element or

list of elements inside the widget whose parameter it is.

Widget build(BuildContext context) {

 return Padding(

 padding: const EdgeInsets.all(10),

 child: ListView(

 children: <Widget>[

 Container(

 alignment: Alignment.center,

 padding: const EdgeInsets.all(10),

 child: const Text(

 'Loghin Page',

 style: TextStyle(

 color: Colors.blue,

 fontWeight: FontWeight.w500,

 fontSize: 30),

)),

 Container(

 alignment: Alignment.center,

 padding: const EdgeInsets.all(10),

 child: const Text(

 'Sign in: ',

 style: TextStyle(fontSize: 24),

…));

}

Fig. 12 Listing with partial code of the build function

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 258 / 283

The StatefulWidget widgets are widgets whose state is changed by the user's interaction

with the application, but also by changing other parameters of the application. Each stateful

widget has an initial state that contains information about the widget. For a user-created

widget to have dynamic content, it must inherit the StatefulWidget widget, according to

Fig. 13.

class My_StatefulWidget extends StatefulWidget {

 const My_StatefulWidget({Key? key}) : super(key: key);

 @override

 State<My_StatefulWidget> createState() => _MyStatefulWidget_State();

}

Fig. 13 Listing of code

If the elements that make up a widget change their properties, so that the framework

identifies the difference between the states of the widget, automatically all the elements

that have undergone a change will be rendered. If in a StatefulWidget widget there are

widgets that do not change their state, such as Text, we must use the const suffix before it,

because the application will remove constant elements from the rendering process and thus

increase its performance, according to Fig. 14.

class _MyStatefulWidget_State extends State<My_StatefulWidget> {

 TextEditingController nameController = TextEditingController();

 TextEditingController passwordController = TextEditingController();

 @override

 Widget build(BuildContext context) {

 return Padding(

…

 child: const Text('Forgot Password?!',),), Container(height: 50,

 padding: const EdgeInsets.fromLTRB(10, 0, 10, 0),

 child: ElevatedButton(

 child: const Text('Login:'),

…

}

}

Fig. 14 Listing of code

Once built, all widgets are stored in the tree that stores the logical structure of the user

interface. The tree stores state in the case of stateful widgets, this being necessary because

widgets cannot store relationships to the parent element or child elements. During widget

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 259 / 283

construction, Flutter avoids traversing the parent chain using InheritedWidgets. This widget

maintains a hash table for each element, thus avoiding repeated traversal of the same

widgets. This hash table only changes when a new element is inserted into the tree.

4. Dart Programming Language – main features

Dart is an optimized programming language that allows the rapid development of a solution

that can be implemented on several platforms. Being a type-safe language, it uses type

checking to ensure that a declared variable corresponds to the data type for which it was

initialized. By using interfaces, declaring the type of a variable became optional, and

declaring it in a dynamic way reverted to the dynamic reserved word, which ensures that a

variable is checked and validated at runtime, when the code is executed [5]

This scenario provides the possibility for a variable to be null on declaration, by using the

sound null safety paradigm. Using this paradigm at runtime, Dart performs static code

analysis, thus filtering and eliminating the possibility of throwing a null exception. The

technologies used by Dart for compilation offer two possibilities for running the code:

- Native Platform - for applications that are intended to run on mobile and desktop

platforms

- Web Platform - for applications that run in a web browser.

For web applications, both compilation modes translate to JavaScript code. Regardless of

the method used for compilation and execution, code execution needs the Dart runtime.

The runtime is responsible for the following critical tasks:

- memory management

- aggressive use of the variable validation system

- isolated process management so that Dart controls the main application process in

an isolated process.

Multithreaded programming in Dart is done by using async-await, isolated constructs, as

well as dedicated classes, like for example Future and Stream classes. The execution of the

code within an application is done inside a hybrid execution thread, which at first glance

looks like a thread, and after a more detailed analysis we will find that it looks like a

process. This method of abstraction is called isolate. In dart, each isolate has a single

encapsulated execution thread, i.e., a safe thread.

5. Flutter vs. React

The main competing cutting-edge technologies for cross-platform development are Flutter

– launched by Google in 2018 - and React Native launched in 2015 by Facebook. Although

React Native supports most APIs for iOS and Android platforms, it does not provide the

ability to create custom elements as Flutter does by using widgets. There are numerous

statistics that show that (as of May 2021), Flutter is closing in on React Native in terms of

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 260 / 283

popularity and usage [6]. A look at the Google Trends results shows that starting from 2020,

Flutter has a global search frequency above React Native. Flutter is the most popular cross-

platform mobile framework used by global developers, according to a survey conducted in

2021 [7]. According to this survey, Flutter was used by about 42% of software developers.

The survey also identified that 33% of mobile developers use cross-platform technologies

while the rest of mobile developers use native tools. A check in google trends of user

searches between Flutter and React Native technologies identified that worldwide, the

interest of users' searches for Flutter technology exceeded the interest of Internet users'

searches for React Native technology (see Fig. 15).

Fig. 15 Comparison of internet searches for Flutter vs React Native technology between

11/21/2021 – 11/20/2022

If we analyze user searches, but for the period 2018-2022, it can be observed that, from

April 2020, the interest in Flutter exceeds the interest of searches for React Native (see Fig.

16).

Fig 16. Comparison of internet searches for Flutter vs React Native technology between

01/01/2018 – 11/20/2022

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 261 / 283

6. Conclusion

In our case-study application, discussed and partially presented in the above code-listing

figures, Flutter allowed code to be written only once and compiled simultaneously for both

iOS and Android. Flutter technology continues numerous facilities for the development of

interactive multi-platform applications based on a complete package of tools for creating

complex elements from simple elements. In Flutter any structure is a widget, including the

application is represented by a widget containing the other widgets. However, the space

occupied by the Flutter application is relatively large, because it is necessary to wrap the

Flutter library in it. In order to be able to keep the same design, layout and widgets on

mobile platforms, Flutter does not use the native elements of the mobile operating system

but renders them using the Skia library. This while facilitating cross-platform development

adds extra storage space occupied by the application. Flutter is fully integrated with Google

services, so it makes it easy to use the Firebase Realtime Database solution for NoSQL

databases. Regarding the performance of an application made in Flutter, the following

factors must be taken into account:

- Speed

- Memory usage

- App size

- Energy consumption [8].

References

[1] Napoli, M.L. Beginning Flutter: A Hands-on Guide to App Development; John Wiley

& Sons: Hoboken, NJ, USA, 2019.

[2] Biessek, Al., Flutter for Beginners: An introductory guide to building cross-platform

mobile applications with Flutter and Dart 2. Packt Publishing Ltd, September 2019.

[3] https://docs.flutter.dev/development/ui/widgets/material - last access: 11.2022

[4] https://docs.flutter.dev/get-started/install/windows - last access: 11.2022

[5] https://dart.dev - last access: 11.2022

[6] https://insights.stackoverflow.com/survey/2021#most-popular-technologies-misc-tech

- last access: 11.2022

[7] https://www.statista.com/statistics/869224/worldwide-software-developer-working-

hours - last access: 11.2022

[8] https://docs.flutter.dev/perf/ - last access: 11.2022

Bibliography

Sameha Rahman, https://www.freecodecamp.org/news/https-medium-com-rahman-

sameeha-whats-flutter-an-intro-to-dart - last access: 06-12-2022

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-misc-tech
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/

Journal of Information Systems & Operations Management, Vol. 16.2, December 2022

Pag. 262 / 283

--, https://www.javatpoint.com/flutter-dart-programming - last access: 06-12-2022

TYAGI P, Pragmatic Flutter, ISBN 0367612097, Taylor & Francis Ltd. 2021

MARBURGER M, Flutter and Dart, ISBN 3836281465, Rheinwerk Verlag Gmbh 2021

HOSSEINI P, Flutter: Zero to App, ISBN 1080745076, Independently Published 2019

ROSE R, Flutter & Dart Cookbok, ISBN 1098119517, O’Reilly Media 2022

MEILLER D, Modern App Development with Dart and Flutter, ISBN 3110721279, De

Gruyter 2021

BELCHIN M, JUBERIAS P, Web Programming with Dart, ISBN 148420557X, APress

2014

PAYNE R, Beginning App Development with Flutter, ISBN 1484251806, APress 2019

ALESSANDRIA S, Flutter Projects, ISBN 1838647775, Packt Publishing Ltd. 2020

	(2022.12) Coperta 1
	3_JISOM 16.2 (final) - Front+Cuprins+Continut
	1_JISOM 16.2 (final) - Front+Cuprins
	2_JISOM 16.2 (final) - Continut

	(2022.12) Coperta 4

